Supporting Information

A Trustworthy CpG Nanoplatform for Highly Safe and Efficient Cancer Photothermal Combined Immunotherapy

Jiang Ming,^{#a} Jinjia Zhang,^{#b} Yiran Shi,^b Wangheng Yang,^a Jingchao Li,^a Duo Sun,^a Sijin Xiang,^a Xiaolan Chen,^{*a} Lanfen Chen^{*b} and Nanfeng Zheng^{*a}

^aState Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

^bState Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China

Fig. S1 TEM images of Pd(5) (a) and Pd(30) (b). (c) TEM image of negative staining of Pd(30)-CpG by using uranyl acetate. The scale bar in a, b and c was 50 nm. The hydrodynamic sizes of Pd(5) and Pd(5)-CpG (d), and Pd(30) and Pd(30)-CpG (e), respectively. (f) Raman spectra of CpG, PVP, Pd NSs and Pd-CpG in the range of 200 to 450 cm⁻¹, laser power (632 nm, 0.66 mW).

Fig. S2 HAADF-STEM-EDX mapping images of Pd-CpG.

Fig. S3 (a, b) Typical fluorescence spectra of FAM-labeled CpG, Pd NSs modified with FAM-labeled CpG and the unloaded FAM-labeled CpG. (c) Standard working curve of FAM-labeled CpG relative to fluorescence intensity. The loading stability of Pd(5)-CpG (d) and Pd(30)-CpG (e) in different media (n=3 for each test). (f, g) UV–Vis–NIR absorption spectra of Pd-CpG, Pd NSs and CpG.

Fig. S4 The *in vitro* IR thermal images of PBS, CpG, Pd(30), Pd(30)-CpG, Pd(5) and Pd(5)-CpG upon 808 nm laser irradiation at different time intervals. The power density of 808 nm laser was 0.15 W cm^{-2} and the concentration of Pd was 25 ppm.

Fig. S5 Routine analysis of blood of mice treated with Pd(5) and Pd(30) after 7 days (n=3 for each group). Mean values and error bars are defined as mean and S.D., respectively.

Fig. S6 The biodistributions of Pd (% injected dose (ID) of Pd per gram of tissue) in main tissues at 7 days after intravenous administration of Pd(5) (a) and Pd(30) (b) (n=3 for each group). Mean values and error bars are defined as mean and S.D., respectively.

Fig. S7 Flow cytometry analysis of CD3⁺ T cells, CD4SP (CD3⁺ CD4⁺ CD8⁻)/CD8SP (CD3⁺ CD4⁻ CD8⁺), CD4⁺/CD8⁺ Naïve T cells (CD44⁻ CD62L⁺), Memory T cells (CD44⁺ CD62L⁺), Effector T cells (CD44⁺ CD62L⁻) from the spleen of mice (n=3 for each group).

Fig. S8 Flow cytometry analysis of CD3⁺ T cells, CD4SP (CD3⁺ CD4⁺ CD8⁻)/CD8SP (CD3⁺ CD4⁻ CD8⁺), CD4⁺/CD8⁺ Naïve T cells (CD44⁻ CD62L⁺), Memory T cells (CD44⁺ CD62L⁺), Effector T cells (CD44⁺ CD62L⁻) from the lymph node of mice (n=3 for each group).

Fig. S9 Flow cytometry analysis of the maturation B cells from lymph nodes, blood and spleen of mice (n=3 for each group).

Fig. S10 Flow cytometry analysis of macrophages and neutrophils from the spleen of mice (n=3 for each group).

Fig. S11 Flow cytometry analysis of macrophages and neutrophils from the bone marrow of mice (n=3 for each group).

Fig. S12 Flow cytometry analysis of dendritic cell (DC) maturation after various treatments. The DC cells were stained with anti-CD80 and anti-CD86 (n=3 for each group). *p<0.05.

Fig. S13 Comparison of the TNF- α (a) and IL-6 (b) releases in DCs culture stimulated by PBS, CpG(PS), Pd(5) and Pd(5)–CpG(PS) without or with NIR irradiation (808 nm, 0.15 W cm⁻², 5 min), respectively.

Fig.S14 The activation of CD8⁺ T cells stimulated by matured DCs. DCs were first incubated with supernatant from Pd(5)-CpG(PS)+NIR treated B16F10-OVA (or other controls). BMDCs were then subjected to an *in vitro* presentation assay using CFSE-labeled CD8⁺ T cells (n=4 for each group).

Fig. S15 Pharmacokinetics studies of Pd(5) and Pd(5)-CpG(PS). The blood circulation curves of intravenously injected Pd(5) (a) and Pd(5)-CpG(PS) (b) (n = 5). The half-lives (t1/2) for Pd(5) and Pd(5)-CpG(PS) were calculated to be ~21 h and ~24 h, respectively.

Fig. S16 The biodistributions of Pd (% injected dose (ID) of Pd per gram of tissue) in main tissues and tumors in 1, 2, 4 and 6 days after intravenous administration of Pd(5) (a) and Pd(5)-CpG(PS) (b). Mean values and error bars are defined as mean and S.D., respectively (n=5).

Fig. S17 Urine and feces excretion of Pd(5) and Pd(5)-CpG(PS) (n=3).

Fig. S18 The temperature increase profiles of tumor tissues in mice during laser irradiation. The power density of 808 nm laser was 0.15 W cm⁻².

Fig. S19 Optical photos of mice before and after treatment at different treated groups.

Fig. S20 PTT effect of Pd(5)-CpG on RAW 264.7 cells. The laser power density of 808 nm was 0.15 W cm⁻².

Fig. S21 The matured APCs (CD11c⁺MHC II⁺) both in percentage (b) and number (c) in tumor after different treatments (n=4 for each group).

Fig. S22 CD11c⁺ IL12p40⁺ cells (a and b), CD3⁺ CD8⁺ cells (c and d) and IFN γ CD8⁺ cells (e and f) from the spleen of mice (n=4 for each group).

Fig. S23 CD11c⁺ IL12p40⁺ cells (a and b), CD3⁺ CD8⁺ cells (c and d) and IFN γ CD8⁺ cells (e and f) from the blood of mice (n=4 for each group).

Fig. S24 Flow cytometry analysis of macrophage (a and b) from the spleen of mice (n=4 for each group).

Fig. S25 Concentrations of TNF- α (a) and IL-6 (b) in the sera of different groups treated mice (Control, Pd(5)+NIR and Pd(5)-CpG(PS)+NIR).

Fig. S26 Flow cytometry analysis of MDSCs (CD11b⁺Gr-1⁺), M2 macrophages (Arg1⁺F4/80⁺) and Treg cells (CD4⁺FOXP3⁺) in tumor after Pd(5)+NIR and Pd(5)-CpG(PS)+NIR treatment (n=4 for each group).