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I. RATE EQUATIONS

Magnetic nanoparticles (NPs) with predominant uniaxial anisotropy can be described

as double-well systems (DWS). The model is exploited to draw and analyze the hysteresis
loops of particles submitted to cyclic magnetization. Here, the main assumptions laeding to
the rate equations are given.
Each magnetic nanoparticle has size D, effective volume V = (7/6)D? and magnetic mo-
ment p = MV where M; is the saturation magnetization of the material; in the absence of
magnetic field, the magnetic moment is aligned by to the easy axis by uniaxial anisotropy of
amplitude K. sy The easy directions of NPs are assumed to be evenly distributed in space;
in Figure 1 the plane containing the rotation of the u vector is defined by the applied field
H and the easy axis of a nanoparticle.

Let N4 be the number (per unit volume) of particles of magnetic moment p whose easy
axis forms an angle ¢ with respect to H. For easy-axis directions evenly distributed in
space, Ny = N/2m, N being the total number (per unit volume) of particles in the system.
For each angle ¢ the occupancy numbers in the two wells are Ny4 and Nay (N14+ Nog = Ny).

The energy of a single DWS, E(6, ¢) is:

E(0,¢) = Ko (T)Vsin®(0) — 2HM(T)V cos(0 — ¢)
where 6 is the angle between the magnetic moment direction and the easy axis. The angles
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FIG. 1. Top: energy of the DWS without and with applied field; bottom: reference system (easy

axis parallel to the x-axis).

of minimum energy 01(¢), 62(¢) (see Figure 1) are found by requiring that the derivative of
E(0, ¢) with respect to 6 be equal to zero; the magnetization along the field direction at the

temperature T is therefore:

M(T, ¢) = Nig(T)M(T)V cos(61(¢) — b)
+No(T)Ms(T)V cos(02(d) — ).

The redistribution of particles in the two wells is ruled by the rate equations:

dN, 1 1 N, 1 1
T R D i RO )
1
dNy 1 1 N, 1 1
. B T Tl(i) - (ﬁ(t) " 72(75)>N2¢'

In the standard Arrhenius picture the time-dependent escape frequencies are:
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where F;(t) are the energies of the two energy minima, E);(t) is the energy at the top of
the barrier(see Figure 1).

The energies E; 5y depend on time when H = H(¢). The problem’s symmetry dictates
the general relationship 7 (—H) = m»(H) that holds at all angles ¢.

In high-frequency measurements 7,,.q.s is conventionally taken as the reciprocal of mea-
surement frequency. In this case the sweep rate is no longer a constant; nevertheless, it is
still possible to introduce a r.m.s sweep rate Rgg defined as Rpyg = (7/v/2)H, f where
H, is the vertex field. The dimensionless rate equations (1) can be rewritten in terms of the

magnetic field H:
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where the F sign refers to the upper/lower loop branch.

The behavior of a DWS assembly with randomly distributed easy axes is obtained by
averaging the solutions of the full rate equations (2) over all ¢ angles.

In three dimensions, the average of a ¢-dependent quantity g(¢) is the sum:
SV (@) sin(di)) SN sin(¢;) over N angles in the interval —7/2 < ¢; < 7/2. In this work,
N has been fixed to 181; the relative difference between the average done with N = 181 and
with N = 1801 is negligible (< 2 x 1073).

II. ON THE VALIDITY OF RATE EQUATIONS

The rate-equation approach is a simplifying approximation to the Fokker-Planck equation
for the double-well problem. For magnetic nanoparticles, rate equations naturally emerge
from the Fokker-Planck equation when the ratio K.;/V/kgT is significantly larger than
unity; therefore the validity of the approach at a given temperature depends on both mag-
netic anisotropy and nanoparticle size.

In rate equations containing time-dependent escape frequencies, as the ones studied here,
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detailed balancing is achieved only when w7, << 1 where 7. is the characteristic relax-
ation time of the system. In magnetic nanoparticles, the free diffusion time of magneti-
zation is 7, = M,V (1 + o?)/2vakgT where ~ is the electron gyromagnetic ratio and « is
the Gilbert’s damping constant appropriate to describe systems with intermediate-to-high
damping (o = 1) such as magnetic nanoparticles. Using a = 0.5 one gets 7. = 1.06 x 107 s
for D = 15 nm. In this case, the driving-field frequency should be much lower than 1.50 x 108
Hz to guarantee detailed balancing. In fact, the driving-field frequency used in the paper
(f = 1 x 10° Hz) ensures that rate equations can be confidently applied for all studied

nanoparticle sizes.



