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I. RATE EQUATIONS

Magnetic nanoparticles (NPs) with predominant uniaxial anisotropy can be described

as double-well systems (DWS). The model is exploited to draw and analyze the hysteresis

loops of particles submitted to cyclic magnetization. Here, the main assumptions laeding to

the rate equations are given.

Each magnetic nanoparticle has size D, e�ective volume V = (π/6)D3 and magnetic mo-

ment µ =MsV where Ms is the saturation magnetization of the material; in the absence of

magnetic �eld, the magnetic moment is aligned by to the easy axis by uniaxial anisotropy of

amplitude Keff The easy directions of NPs are assumed to be evenly distributed in space;

in Figure 1 the plane containing the rotation of the µ vector is de�ned by the applied �eld

H and the easy axis of a nanoparticle.

Let Nφ be the number (per unit volume) of particles of magnetic moment µ whose easy

axis forms an angle φ with respect to H. For easy-axis directions evenly distributed in

space, Nφ = N/2π, N being the total number (per unit volume) of particles in the system.

For each angle φ the occupancy numbers in the two wells are N1φ and N2φ (N1φ+N2φ = Nφ).

The energy of a single DWS, E(θ, φ) is:

E(θ, φ) = Keff (T )V sin
2(θ)− 2HMs(T )V cos(θ − φ)

where θ is the angle between the magnetic moment direction and the easy axis. The angles
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FIG. 1. Top: energy of the DWS without and with applied �eld; bottom: reference system (easy

axis parallel to the x-axis).

of minimum energy θ1(φ), θ2(φ) (see Figure 1) are found by requiring that the derivative of

E(θ, φ) with respect to θ be equal to zero; the magnetization along the �eld direction at the

temperature T is therefore:

M(T, φ) = N1φ(T )Ms(T )V cos(θ1(φ)− φ)

+N2φ(T )Ms(T )V cos(θ2(φ)− φ).

The redistribution of particles in the two wells is ruled by the rate equations:
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In the standard Arrhenius picture the time-dependent escape frequencies are:

τ−1
i (t) = τ−1

0 exp
(
− EM(t)− Ei(t)

kBT

)
(i = 1, 2)
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where Ei(t) are the energies of the two energy minima, EM(t) is the energy at the top of

the barrier(see Figure 1).

The energies Ei,M depend on time when H = H(t). The problem's symmetry dictates

the general relationship τ1(−H) = τ2(H) that holds at all angles φ.

In high-frequency measurements τmeas is conventionally taken as the reciprocal of mea-

surement frequency. In this case the sweep rate is no longer a constant; nevertheless, it is

still possible to introduce a r.m.s sweep rate RRMS de�ned as RRMS = (π/
√
2)Hvf where

Hv is the vertex �eld. The dimensionless rate equations (1) can be rewritten in terms of the

magnetic �eld H:
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where the ∓ sign refers to the upper/lower loop branch.

The behavior of a DWS assembly with randomly distributed easy axes is obtained by

averaging the solutions of the full rate equations (2) over all φ angles.

In three dimensions, the average of a φ-dependent quantity g(φ) is the sum:∑N
1 g(φi)sin(φi)/

∑N
1 sin(φi) over N angles in the interval −π/2 ≤ φi ≤ π/2. In this work,

N has been �xed to 181; the relative di�erence between the average done with N = 181 and

with N = 1801 is negligible (< 2× 10−3).

II. ON THE VALIDITY OF RATE EQUATIONS

The rate-equation approach is a simplifying approximation to the Fokker-Planck equation

for the double-well problem. For magnetic nanoparticles, rate equations naturally emerge

from the Fokker-Planck equation when the ratio KeffV/kBT is signi�cantly larger than

unity; therefore the validity of the approach at a given temperature depends on both mag-

netic anisotropy and nanoparticle size.

In rate equations containing time-dependent escape frequencies, as the ones studied here,
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detailed balancing is achieved only when ωτc << 1 where τc is the characteristic relax-

ation time of the system. In magnetic nanoparticles, the free di�usion time of magneti-

zation is τc = MsV (1 + α2)/2γαkBT where γ is the electron gyromagnetic ratio and α is

the Gilbert's damping constant appropriate to describe systems with intermediate-to-high

damping (α ≈ 1) such as magnetic nanoparticles. Using α = 0.5 one gets τc = 1.06× 10−9 s

for D = 15 nm. In this case, the driving-�eld frequency should be much lower than 1.50×108

Hz to guarantee detailed balancing. In fact, the driving-�eld frequency used in the paper

(f = 1 × 105 Hz) ensures that rate equations can be con�dently applied for all studied

nanoparticle sizes.
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