Supporting information

Mars-van-Krevelen mechanism-based blackening of nano-sized white semiconducting oxides for synergetic solar photo-thermocatalytic degradation of dye pollutants

Haoming Bao ‡a, Shuyi Zhu ‡a, b, Le Zhou a, b, Hao Fu a, b, Hongwen Zhang *a and Weiping Cai *a, b

^aKey Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid

State Physics, Chinese Academy of Sciences, Hefei 230031, P.R. China

^bUniversity of Science and Technology of China, Hefei 230026, PR China

1. Computational details

The computational calculations were performed within DFT method. The general gradient approximation (GGA) with Perdew-Burke-Enzerhoff (PBE) functional and ultrasoft pseudo-potentials were used to describe the exchange correlation effects and electron-ion interactions, respectively, with kinetic energy cutoffs of 340.0 eV. The k-points were set to $4 \times 4 \times 1$, Structure optimization was performed by minimizing the total energy and the ionic force, until all the components of the residual forces were less than 0.03 eV/Å. The energy and the displacement tolerances were set to $1.0 \times 10^{-5} \text{ eV/atom}$, and $1.0 \times 10^{-3} \text{Å}$, respectively. All the calculations have been performed in CASTEP codes.

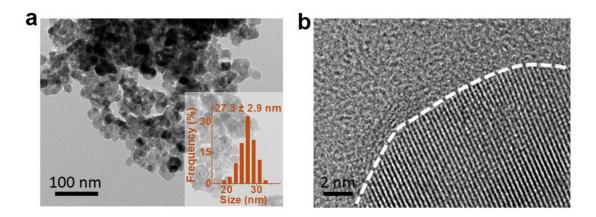
The optimized bulk lattice parameters were a=3.78904 Å, b=3.78904 Å, c=8.3475 Å. The (001) surface were modeled by vacuum slabs with a thickness of 15 Å and the number of the atom layers is 4.

2 Synthesis of the ZnO nanocrystal powder

The synthesis of nano sized ZnO nanocrystal was prepared by direct precipitation method, according to a previous work S1.

In details, firstly, 50 mL of Zn(NO₃)₂ aqueous solution with concentration of 1 wt% was

added into 50 mL of NaOH aqueous solution with concentration of 1.5 wt%. Afterwards, white Zn(OH)₂ precipitate was formed. After 3 times of centrifugation (5 min, 800 rpm) for collection and cleaning, the Zn(OH)₂ precipitate was dried at 80 °C for 1 h, forming Zn(OH)₂ powder. Then the Zn(OH)₂ powder was annealed at 300 °C for 2.5 h. After that the ZnO powder was thus prepared.


3 Synthesis of the SnO₂ nanocrystal powder

The synthesis of nano sized SnO₂ nanocrystal was also prepared by direct precipitation method, according to a previous work ^{S2}.

In details, firstly, 50 mL ammonia aqueous solution (1 M) was added directly to 50 mL SnCl₄ aqueous solution (0.2 M) to form white Sn(OH)₄ precipitate. The Sn(OH)₄ precipitate was collected by 3 times of centrifugation (5 min, 800 rpm). The precipitates were then dried at 80 °C for 1 h. The dried precipitates were annealed at 300 °C in the air for 2.5 h, forming the SnO₂ powder.

Reference

- S1 J. R. Huffman and B. F. Dodge, *Ind. Eng. Chem.*, 1929, **21**, 1056-1061.
- S2 K. C. Song and Y. Kang, *Mater. Lett.*, 2000, **42**, 283-289.

Fig. S1 (a) The low magnification of TEM image of the pristine TiO_2 nanocrystals. (b) The HRTEM image of the pristine TiO_2 nanocrystals.

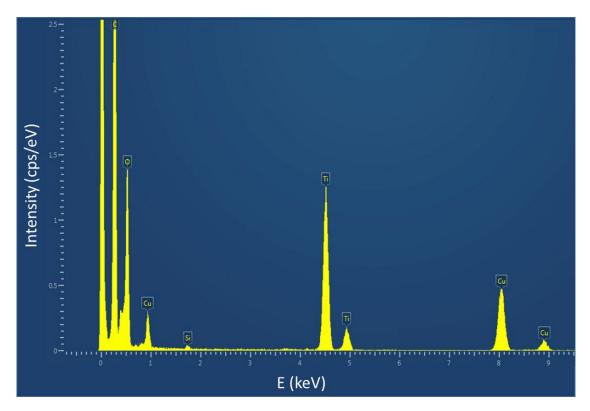
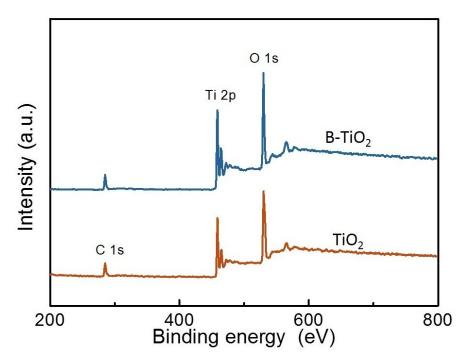
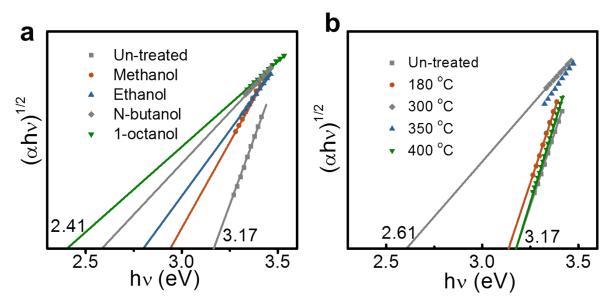
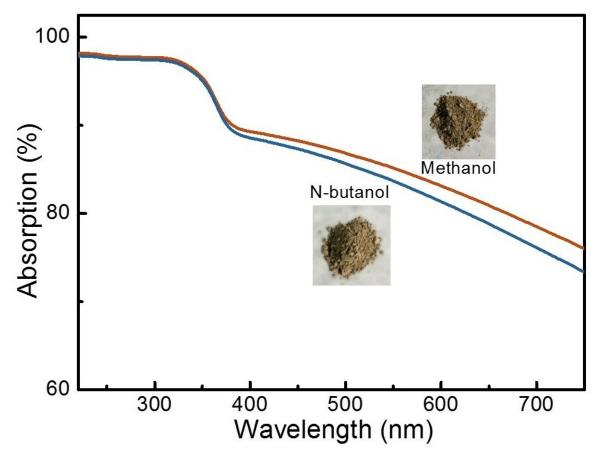


Fig. S2 The EDS spectrum of the B-TiO $_2$ corresponding to Fig. 2b.

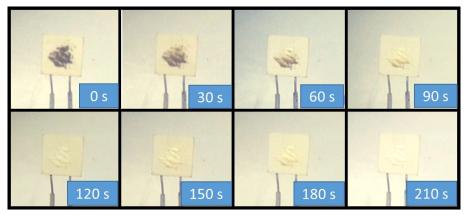

Fig. S3 The XPS full survey spectra of the pristine TiO_2 and the B- TiO_2 powders.

Fig. S4 The plots of photon energy (hv) versus the $(\alpha hv)^{1/2}$ corresponding to the data in Fig. 3.

Fig. S5 The optical absorption spectra of the $B-TiO_2$ powders obtained with argon-loaded methanol and N-butanol vapor flow. The insets are the photos of the corresponding $B-TiO_2$ powders.

Fig. S6 The pictures of color evolution of B-TiO₂ during heating at 400 °C.