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Figure S1: Raman spectroscopy of the graphitic foams. (a) D, G and 2D band positions. 

(b) Fitting of the 2D peak shows a characteristic AB-stacking graphitic mode. 
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Table S1: Resistivity of the different graphene foams 

Sample Resistivity [Ωm] 

LD GF 0.053 

HD GF 0.027 
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Figure S2: HD GFs, before (a)-(e) and after Ni 

etching (f)-(i).  
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Figure S4: Atomic force microscopy of the 10 nm (100 cycles) MoS2 film. 

The inset shows the cross section along the red line. 

Figure S3: Tensile test of the standard and high density GF. (a) Tensile test 

results for the LD (black) and HD (red) GFs. (b)-(c) SEM images of the crack 

region for the LD and HD-GFs, respectively. (d) Optical image showing the 

set-up and the LD-GF failure. (e) – (f) PDMS-GF composites.  

ρ(Ni foam) ~ 1 gr/cm3 

ρ(LD) ~ 0.012 gr/cm3 

ρ(HD) ~ 0.038 gr/cm3 
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Figure S5: MoS2 film Morphology before and after annealing: (a) BSE image showing the 

MoS2 (bright) and the GF (dark) at the foam edge and (b) in an inner area of the foam. (c) SE 

image showing a smooth continuous film as deposited. (d)-(f) SEM images showing the 

formation of 100-400 nm crystals after annealing at 800 °C. The vast majority laying parallel 

to the GF substrate, as shown in (e) by the yellow lines emphasizing the facets and the blue 

arrows in (f). The red arrows in (f) point to vertical hexagonal crystals, as the one shown in 

high magnification in the inset. 



For comparison, LD- and HD-GFs were coated with MoS2 using wet chemistry approaches. In this 

scheme, ~50 mg Ammonium tetrathiomolybdate ((NH₄)₂MoS₄) were dissolved in 30 ml N,N-

dimethylformamide (DMF) by ultrasonication. The solution was drop casted (5-10 10l drops) or 

the GF was immersed for few minutes in the solution and dried.        
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Figure S6: Comparison between liquid-phase and ALD – derived MoS
2
 coatings: (a) Schematic 

representation of the liquid-phase methodology. (b)-(c) SEM images showing the morphology 

of the HD-800 sample prepared via liquid-phase. (d)-(e) HD-800 sample prepared via ALD, 

which preserves the HD-GF morphology. 
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Figure S7: EDS mapping MoS2/GFS: (a) LD-300, (b) LD-500, (c) LD-800 and (d) HD-800. From 

left to right, SEM image of the mapping area, mapping of the Mo (red), S (yellow), C (green) 

and O (light blue).  
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Figure S8: Additional HRTEM images of the MoS2/GFs heterostructures. 

 

Figure S9: Additional SEM and Raman data. (a)-(b) LD-800, (c)-(d) HD-800. (e) The 

respective Raman spectra showing the two phases, MoS2 and MLG characteristic 

peaks. 
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Sample FWHM (E2g) [cm-1] FWHM (A1g) [cm-1] I(A1g)/I(G) 

500-MoS2/GF 14.2  12.5 0.68 

800-MoS2/GF 9.7  9.2 3.32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2: Raman spectroscopy characterization of the 3D MoS2/GF heterostructures. 

 

Figure S10: XPS characterization: (a) Survey, (b) Mo 3d before and after sputtering 

showing the reduction of the MoO3 contribution (black arrow), (c) O 1s and (d) C 1s 

spectra. 
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Electrochemical surface area determination was conducted using double layer capacitance at 

room temperature in the same three-electrode glass cell using a Bio-Logic VSP-300 potentiostat. 

This method based on double layer capacity voltammetric curves, which recorded in the mere 

double layer region at various scan rates. Then, a plot of the current in the middle of the potential 

window vs. scan rate is constructed. Under the condition, where the double layer charging is the 

only process occurring in that potential range, this plot is a straight line, whose slope gives the 

value of double layer differential capacity. The surface area can be calculated by referring the 

obtained capacity to the reference value of capacity per the unit area (Cref): 

ECSA = C / Cref 
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Figure S11: Electrochemical Surface Area (ESCA) measurements: (a) –(b) Double layer charging 

currents recorded with various scan rates in 0.5 M H2SO4 (298 K) for the LD- (a), and HD-GFs (b).   

(c) Double layer charging current at potential of 0.50 vs. RHE on scan rate for a polycrystalline Pt 

electrode in 0.5 M H2SO4. 
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Table S3- Comparison of HER catalytic performance  

Catalyst Morphology 3D compatible η(mV)@j= 

-10mA/cm2 

Tafel slope 

(mV/dec) 

Ref. 

ALD-MoS2/GF Thin film 

coated GF 

Y (ALD) 180 47 This work 

ALD-MoS2 Thin films Y (ALD) ~225 61 [1] 

ALD-MoS2 Thin films Y (ALD) ~222 57 [2] 

ALD-MoS2 Thin films Y (ALD) >227 @ j=-

5mA/cm2 

47 [3] 

Amorphous MoS2 Thin films M (wet-chem) ~225 40 [4] 

MoS2/Graphene/Ni 

foam 

nanosheets M (wet-chem) 140 42 [5] 

defect-rich MoS2 nanosheets M (wet-chem) 180 50 [6] 

Oxygen-incorporated 

MoS2 

nanosheets M (wet-chem) 180 55 [7] 

MoS2 film M (vapor-phase) 170 60 [8] 

mesoporous MoS2 nanosized  Y (electrodeposition 

+ sulfurization) 

~250 50 [9] 

metallic MoS2 nanosheets M (wet-chem) 187 43 [10] 

MoSx- Graphene nanoparticles M (wet-chem) ~180 43 [11] 

MoS2/graphite 
paper 

flakes M (vapor-phase) 350 54 [12] 

MoS2/carbon cloth nanosheets M (wet-chem) 150 50 [13] 

MoS2/Graphene/Ni 

foam 

nanoparticles M (wet-chem) 160 43  [14] 



Y- Yes, compatible, M-moderate, N – not compatible.  

Most of the wet-chemical approaches are labeled with “M” for a moderate compatibility with 3D 

porous structures due the inducement of morphological changes in small pore sizes, as shown in 

Figures S5 (b) and (c). 

 

 

 

 

 

 

 

 

 

 

 

Superaerophobic 

MoS2 film 

nanosize M (wet-chem) 200 51 [15] 

Amorphous MoSx  Film N (PVD) 180 45 [16] 

Etched MoS2 flakes Isolated flakes N 540 138 [17] 

Amorphous MoS2 Nanosized 

Amorphous 

MoSx 

N 145 40 [18] 

Porous MoS2 ~100nm pores M (wet-chem) 210 113 [19] 

Li-Intercalated VA-

MoS2 

Li-VA MoS2 

films 

M (vapor-phase) + 

electrochemical 

intercalation 

210 43-47 [20] 

VA-MoS2/graphene MoS2/ 

graphene film 

M (vapor-phase) 420 54 [21] 

Figure S12: HER stability measurements: (a)-(b) Polarization curves for the LD, (a), and HD, (b), 

foams at the initial and after 3000 cycles. (c) Exchange currents for the different MoS2/GFs. (d) 

Overpotential and Tafel slopes for the different foams at the initial and after 3000 cycles. (e) 

Polarization curves for the HD foams with the pristine GF data, in grey, confirming it is not active 

towards HER.  

(e) 
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