Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

1 Electronic Supplementary Information (ESI) for:

3	Amorphous nickel sulfides nanoparticles anchored on the N-doped
4	graphene nanotubes with superior properties for high-performance
5	supercapacitor and efficient oxygen evolution
6	Alan Meng ^a , Xiangcheng Yuan ^a , Tong Shen ^a , Jian Zhao ^b , Guanying Song ^b , Yusheng
7	Lin ^c , Zhenjiang Li ^{a,b,c} *
8	^a State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and
9	Molecular Engineering, Qingdao University of Science and Technology, Qingdao
10	266042, Shandong, PR China
11	^b Key Laboratory of Polymer Material Advanced Manufacturing Technology of
12	Shandong Provincial, College of Sino-German Science and Technology, College of
13	Electromechanical Engineering, Qingdao University of Science and Technology,
14	Qingdao 266061, Shandong, PR China
15	c. College of Materials Science and Engineering, Qingdao University of Science and
16	Technology, Qingdao 266042, Shandong, P. R. China.
17	*Corresponding Author
18	E-mail addresses: <u>zjli126@126.com</u>
19	
20	
21	
22	

1 Calculations:

 2 (1) The specific capacitances (Cg) of the N-GNTs@NSNs on GS electrode calculated

3 from GCD curves are obtained according to the following equation:

4
$$C_g = \frac{I\Delta t}{m\Delta V}$$

5 where *I* is the discharge current, Δ*t* is the discharge time in GV test, *m* is the mass
6 loading of the electrode materials, *s* is the area of the electrode materials, and Δ*V* is
7 the voltage window.

8 (2) The specific capacitance (C_{device}) of the N-GNTs@NSNs on GS// AC on NF
9 asymmetric supercapacitor (ASC) device can be obtained in accordance with the
10 following equation:

11
$$C_{\text{device}} = \frac{I\Delta t}{M\Delta V}$$

Herein, *I* is the discharge current, Δ*t* is the discharge time in GCD test, *M* is the mass
of the device, and Δ*V* is the voltage window of the device.

14 (3) Methods to calculate the energy and power density of the ASC device:

15
$$E = \frac{1}{7.2} C_{device} \Delta V^2; P = \frac{E}{t}$$

16 Here, C_{device} is the specific capacitance of the device, ΔV is the potential window, and

17 t is the discharge time.

18 (4) The measured potentials are referred to RHE using the following equation:

19
$$E(RHE) = E(SCE) + 0.059PH + 0.241$$

20 (5)The electrochemical double-layer capacitance (Cdl) is determined from the CV

21 curves measured in a potential range without redox process by following equation:

1	$Cdl = \frac{I}{v}$
2	where I is the charging current (mA cm ⁻²), and v is the scan rate (mV s ⁻¹).
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	

T	
2	Fig. S2 Low-magnification SEM images of nickel sulfides without N-GNTs.
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

3 Fig. S7 (a) CV curves of nickel foam at different scan rates. (b) GCD curves of nickel foam at 1 mA cm⁻². (c)

capacity at different current densities from 1 to 10 A g⁻¹. (f) Nyquist plot of the AC electrode.

- Fig. S8 Nyquist plots and an equivalent circuit diagram of the ASC device.

1 Tab. S1. Electrochemical performances comparison of the as-prepared N-GNTs@NSNs with the

other Ni-based compound fabricated by different methods.

Material	Fabrication method	current collector	electrolyte	Specific capacitance	Rate performance	Reference
NiS cubes	Solvothermal and calcination	Ni foam	2М КОН	874.5F g ⁻¹ (1 A g ⁻¹)	454.5 F g ⁻¹ (20 A g ⁻¹)	S1
NiCo ₂ S ₄ /Co ₉ S ₈	Hydrothermal	Ni foam	6M KOH	749F g ⁻¹ (4 A g ⁻¹)	620F g ⁻¹ (15 A g ⁻¹)	S2
Co ₃ O ₄ /Ni-based MOFs	Hydrothermal	Carbon cloth	ЗМ КОН	209 mAh g ⁻¹ (2 A g ⁻¹)	58 mAh g ⁻¹ (10 A g ⁻¹)	S3
(Ni,Co)Se ₂ /NiCo- LDH	Calcination and electrodeposition	Carbon substrate	ЗМ КОН	170 mAh g ⁻¹ (2 A g ⁻	120.7 mAh g ⁻¹ (20 A g ⁻¹)	S4
Ni ₃ S ₂ @β-NiS Core–Shell	Solvothermal	Ni foam	2М КОН	1158F g ⁻¹ (2 A g ⁻¹)	670F g ⁻¹ (50 A g ⁻¹)	S5
GO@NiCo-LDH	Hydrothermal	Powder	6M KOH	1489F g ⁻¹ (1 A g ⁻¹)	1300F g ⁻¹ (20 A g ⁻¹)	S6
NiCo ₂ O ₄ @rGO	Hydrothermal	Ni foam	6M KOH	1125F g ⁻¹ (1 .5A g ⁻¹)	922F g ⁻¹ (6A g ⁻¹)	S7
NiCo-LDH	Hydrothermal	Graphene film	6M KOH	227mAh g ⁻¹ (0.5 A g ⁻¹)	175mAh g ⁻¹ (20 A g ⁻¹)	S8
NiCo ₂ S ₄ NNSs	Hydrothermal,	Ni foam	4M KOH	1667F g ⁻¹ (1 A g ⁻¹)	1427F g ⁻¹ (25 A g ⁻¹)	S9
Ag-rGO/Ni(OH) ₂	Hydrothermal,	Ni foam	5М КОН	1220F g ⁻¹ (1 A g ⁻¹)	901F g ⁻¹ (5 A g ⁻¹)	S10
N-GNTs@NSNs	Electrodeposition	Graphite substrates	ЗМ КОН	240 mAh g ⁻¹ (2160F g ⁻) at 6 A g ⁻¹	183 mAh g ⁻¹ (1650F g ⁻¹⁾) at 40 A g ⁻¹	This work

Material	current collector	electrolyte	Current density	Cyclic performance	Reference
NiS cubes	Ni foam	2М КОН	4 A g ⁻¹	90.2%(after 3000 cycles)	S1
NiCo ₂ O ₄ @rGO	Ni foam	2M KOH	10mA cm ⁻²	90%(after 2000 cycles)	S7
Ag-rGO/Ni(OH) ₂	Ni foam	5M KOH	2 A g ⁻¹	92.6%(after 2000 cycles)	S10
NiMoO4@Ni- Co-S	Ni foam	2М КОН	20mA cm ⁻²	91.7%(after 6000 cycles)	S11
NiAl-LDH	Ni foam	6M KOH	20A g ⁻¹	93.75%(after 10000 cycles)	S12
Ni-Co-P NNSs	Ni foam	ЗМ КОН	2A g ⁻¹	93%(after 8000 cycles)	S13
NiS/NHCS	Ni foam	2M KOH	5 A g ⁻¹	76%(after4000 cycles)	S14
Mn-Co- LDH@Ni(OH) ₂	Ni foam	ЗМ КОН	20 A g ⁻¹	90.9%(after 5000 cycles)	S15
Ni ₂ P ₂ O ₇	Ni foam	1M KOH	50mA cm ⁻²	87%(after 5000 cycles)	S16
NiCo ₂ O ₄	Ni foam	6М КОН	10 A g ⁻¹	76.92%(after 10000 cycles)	S17
N-GNTs@NSNs	Graphite substrates	ЗМ КОН	16 A g ⁻¹	95.8%(after 12000 cycles)	This work

1	Tab.	S2.	Cycling	stability	comparison	f the N-GNTs@NSNs with the	other Ni-based compound.
---	------	-----	---------	-----------	------------	----------------------------	--------------------------

ASC devices	Cell voltage (V)	Cycle performance	Reference
NiO NSs@CNTs@CuO NWAs//AC	1.55	83.6% retention after 4000 cycles	S18
Ni/NiO//CNTs-COOH	92.8% retention 1.8 after 10000 cycles		S19
Ni-Co-S-W /NF//AC/NF	1.6	91.7% retention after 6000 cycles	S20
ZNCO@Ni(OH) ₂ NWAs/CNTF//VN@C NWAs/CNTS	1.6	90.3% retention after 3000 cycles	S21
Ni(OH) ₂ /CNs//AC	1.6	93% retention after 10000 cycles	S22
Ni-Mo-S NS//Ni-Fe-S NS	95.86% retention Ni-Fe-S NS 1.6 after 10000 cycles		S23
$\begin{array}{c} 94.6\% \ \text{retention} \\ \hline \\ \text{After 10000 cycles} \\ \hline \\ \text{Ni}_3\text{S}_2@\text{Ni} \ \text{AC} \\ \end{array} \\ \begin{array}{c} 1.7 \\ & after 10000 \ \text{cycles} \\ \hline \\ after 10000 \ \text{cycles} \\ \hline \\ 90.6\% \ \text{retention} \\ after 10000 \ \text{cycles} \\ \hline \\ after 10000 \ \text{cycles} \\ \hline \\ after 10000 \ \text{cycles} \\ \hline \\ \end{array} \end{array}$		S24	
		S25	
		S26	
ZCS/Ni(OH) ₂ //ZCS/Ni(OH) ₂	1.3	78% retention after 10000 cycles	S27
N-GNTs@NSNs//AC	1.6	96.6% retention	In this

1 Tab. S3. Cycling performance comparison of our device with the previously reported ASC

2 devices

Catalysts	Powder/on substrates	Electrolyte	Overpotential @10mAcm ⁻²	Tafel slope (mV dec ⁻¹)	Reference
			(mV)		
NiCo ₂ O ₄	Carbon Cloth	1M KOH	340	72	S28
Co _{0.85} Se	carbon fabric collector	1М КОН	320	85	S29
NiCo-LDH	Graphene film	1M KOH	289	93.5	S 8
CoO	Carbon Cloth	1M KOH	320	80	S30
CoCr@NGT	Glassy carbon	1M KOH	330	95	S31
Co(CO ₃) _{0.5} (OH)	Ni foam	1M KHCO ₃	332	126	S32
β -Co(OH) ₂	Co Plate	1M KOH	332	68.3	S33
Fe(TCNQ) ₂	Fe film	1M KOH	340	94	S34
Co ₃ O ₄	Glassy carbon	1M KOH	307	76	835
Ni(OH) ₂ -Ag-RGO	Glassy carbon	1M KOH	292	58	S36
N-GNT@NSNs	Graphite substrates	1М КОН	284	60.7	This work

Tab. S4. Comparison of OER performances of Ni-Co compound based materials.

1
т
_
2

3 References

- 4 S1 M. Xin, Z. Li, G. Xu, C. Zhang, H. Song, Y. He, Z. Chi and D. Jia, Chem. Eng.
- 5 *J*., 2017, **320**, 22-28.
- 6 S2 L. Hou, Y. Shi, S. Zhu, M. Rehan, G. Pang, X. Zhang and C. Yuan, *J. Mater.*7 *Chem. A*, 2017, **5**, 133-144.
- 8 S3 L. Zhang, Y. Zhang, S. Huang, Y. Yuan, H. Li , Z. Jin , J. Wu, Q. Liao, L. Hu, J.
- 9 Lu, S. Ruan and Y. Zeng, *Electrochim. Acta*, 2018, **281**, 189-197.
- 10 S4 X. Li, H. Wu, C. Guan, A. Elshahawy, Y. Dong, S. Pennycook and J. Wang,
 11 Small, 2019, 15, 1803895-1803904.
- 12 S5 L. Wei, S. Wang, L. Xin, W. Ming and X. Lou, J. Mater. Chem. A, 2016, 4,
 13 7700-7709.
- 14 S6 J. Yang, C. Yu, C. Hu, M. Wang, S. Li, H. Huang, K. Bustillo, X. Han, C. Zhao,
- W. Guo, Z. Zeng, H. Zheng and J. Qiu, *Adv. Func. Mater.*, 2018, 28, 180327216 1803282.
- 17 S7 C. Zhang, X. Geng, S. Tang, M. Deng and Y. Du, *J. Mater. Chem. A*, 2017, 5,
 18 5912-5919.
- 19 S8 K. Qin, L. Wang, S. Wen, L. Diao, L. Peng, J. Li, L. Ma, C. Shi, Z. Cheng and
 20 W. Hu, J. Mater. Chem. A, 2018, 6, 8109-8119.
- 21 S9 Y. Wang, Z. Chen, T. Lei, Y. Ai, Z. Peng, X. Yan, H. Li, J. Zhang, Z. M. Wang
 22 and Y. L. Chueh, *Adv. Energy Mater.*, 2018, 8, 1703453-1703463.
- 23 S10 E. C. Cho, C. W. Chang-Jian, K. C. Lee, J. H. Huang, B. C. Ho, R. Z. Liu and Y.

- 1 S. Hsiao, *Chem. Eng. J.*, 2018, **334**, 2058-2067.
- 2 S11 C. Chen, D. Yan, X. Luo, W. Gao, G. Huang, Z. Han, Y. Zeng and Z. Zhu, ACS
- 3 *Appl. Mater. Interfaces*, 2018, **10**, 4662-4671.
- 4 S12 W. Wang, N. Zhang, Z. Shi, Z. Ye, Q. Gao, M. Zhi and Z. Hong, Chem. Eng. J.,
- 5 2018, **338**, 55-61.
- 6 S13 B. Li, P. Gu, Y. Feng, G. Zhang, K. Huang, H. Xue and H. Pang, *Adv. Funct.*7 *Mater.*, 2017, 27, 1605784-1605794.
- 8 S14 L. Tao, C. Jiang, C. Bei, Y. Wei and J. Yu, J. Mater. Chem. A, 2017, 5, 21257-

9 21265.

- 10 S15 S. Liu, I. Shackery, U. M. Patil, C. L. Su, B. Park, H. B. An, K. Y. Chung and S.
- 11 C. Jun, J. Mater. Chem. A, 2016, 5, 1043-1049.
- 12 S16 K. V. Sankar, Y. Seo, S. C. Lee and S. Chan Jun, ACS Appl. Mater. Interfaces,
- 13 2018, **10**, 8045-8056.
- 14 S17 D. Yan, W. Wang, X. Luo, C. Chen, Y. Zeng and Z. Zhu, *Chem. Eng. J.*, 2018,
 334, 864-872.
- 16 S18 G. Nagaraju, S. C. Sekhar and J. S. Yu, *Adv. Energy Mater.*, 2018, 8, 170220117 1702212.
- 18 S19 Y. Jiao, W. Hong, P. Li, L. Wang and G. Chen, *Appl. Catal. B: Environ.*, 2019,
 244, 732-739.
- 20 S20 W. He, Z. Liang, K. Ji, Q. Sun, T. Zhai and X. Xu, *Nano Res.*, 2018, 11, 14151425.
- 22 S21 Q. Zhang, W. Xu, J. Sun, Z. Pan, J. Zhao, X. Wang, J. Zhang, P. Man, J. Guo, Z.

- Zhou, B. He, Z. Zhang, Q. Li, Y. Zhang, L. Xu and Y. Yao, *Nano Lett.*, 2017,
 17, 7552-7560.
- 3 S22 M. Xie, Z. Xu, S. Duan, Z. Tian, Y. Zhang, K. Xiang, M. Lin, X. Guo and W.
 4 Ding, *Nano Res.*, 2017, 11, 216-224.
- 5 S23 J. Balamurugan, C. Li, V. Aravindan, N. H. Kim and J. H. Lee, *Adv. Funct. Mater.*, 2018, 28, 1803287-1803300.
- 7 S24 T. Xu, G. Li, X. Yang, Z. Guo and L. Zhao, Chem. Eng. J., 2019, 362, 783-793.
- 8 S25 J. S. Chen, C. Guan, Y. Gui and D. J. Blackwood, ACS Appl. Mater. Interfaces,
- 9 2017, **9**, 496-504.
- 10 S26 J. Huang, J. Wei, Y. Xiao, Y. Xu, Y. Xiao, Y. Wang, L. Tan, K. Yuan and Y.
 11 Chen, *ACS Nano*, 2018, **12**, 3030-3041.
- 12 S27 J. A. Syed, J. Ma, B. Zhu, S. Tang and X. Meng, Adv. Energy Mater., 2017, 7,
- 13 1701228-1701239.
- 14 S28 C. Guan, X. Liu, W. Ren, X. Li, C. Cheng and J. Wang, Adv. Energy Mater.,
- 15 2017, 7, 1602391-1602398.
- 16 S29 C. Xia, Q. Jiang, C. Zhao, M. N. Hedhili and H. N. Alshareef, *Adv. Mater.*,
 17 2016, 28, 77-85.
- 18 S30 T. Chen, S. Li, J. Wen, P. Gui, Y. Guo, C. Guan, J. Liu and G. Fang, *Small*,
 2018, 14, 1700979-1700986.
- 20 S31 B. Sarkar, B. K. Barman and K. K. Nanda, *ACS Appl. Energy Mater.*, 2018, 1,
 21 1116-1126.
- 22 S32 M. Xie, L. Yang, Y. Ji, Z. Wang, X. Ren, Z. Liu, A. M. Asiri, X. Xiong and X.

- 1 Sun, *Nanoscale*, 2017, **9**, 16612-16615.
- 2 S33 J. Zhang, C. Dong, Z. Wang, C. Zhang, H. Gao, J. Niu and Z. Zhang, *Electrochim. Acta*, 2018, 284, 495-503.
- 4 S34 M. Xie, X. Xiong, L. Yang, X. Shi, A. M. Asiri and X. Sun, Chem. Commun.,
- 5 2018, **54**, 2300-2303.
- 6 S35 Y. Li, F.-M. Li, X.-Y. Meng, S.-N. Li, J.-H. Zeng and Y. Chen, ACS Catal.,
- 7 2018, **8**, 1913-1920.
- 8 S36 X. Zhao, X. Ding, Y. Xia, X. Jiao and D. Chen, ACS Appl. Nano Mater., 2018,
- **9 1**, 1476-1483.
- 10
- 11