Electronic Supplementary Information

Kinetics-controlled design principles for two-dimensional open lattices using atom-mimicking patchy particles

Zhan-Wei Li, †,‡ Yu-Wei Sun, †,‡ Yan-Hui Wang, †,¶ You-Liang Zhu, †,‡ Zhong-Yuan Lu, § and Zhao-Yan Sun *,†,‡,¶

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China, University of Science and
Technology of China, Hefei, 230026, China, Xinjiang Laboratory of Phase Transitions and
Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili
Normal University, Yining 835000, China, and State Key Laboratory of Supramolecular Structure
and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China

E-mail: zysun@ciac.ac.cn

^{*}To whom correspondence should be addressed

[†]Changchun Institute of Applied Chemistry

[‡]University of Science and Technology of China

[¶]Yili Normal University

[§]Jilin University

Table S1: The corresponding relation between simulation parameters α_{ij}^R and α_{ij}^A and the experimentally measurable properties E, G, and d_{eff} . The parameters α_{ij}^R , α_{ij}^A , and δ are given in reduced units, and the reduced unit of length d_{ij} in the model is assumed to approximately correspond to 10 nm.

α_{ij}^R	$lpha_{ij}^A$	δ	E [Pa]	$G[k_BT]$	d _{eff} [nm]
396	223	0.220	5.64×10^{6}	10.00	8.20
490	242	0.198	6.62×10^{6}	10.00	8.34
621	270	0.179	7.98×10^{6}	10.00	8.48
1596	400	0.111	1.72×10^7	10.00	9.00

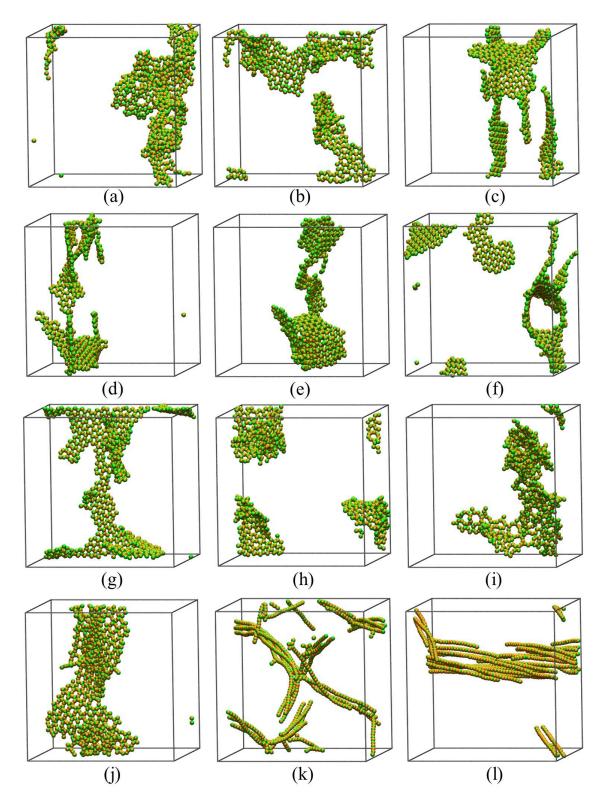


Figure S1: Typical self-assembled structures from soft three-patch particles at different values of φ : (a) $\varphi=100^\circ$, (b) $\varphi=105^\circ$, (c) $\varphi=110^\circ$, (d) $\varphi=115^\circ$, (e) $\varphi=120^\circ$, (f) $\varphi=125^\circ$, (g) $\varphi=130^\circ$, (h) $\varphi=135^\circ$, (i) $\varphi=140^\circ$, (j) $\varphi=145^\circ$, (k) $\varphi=150^\circ$, (l) $\varphi=160^\circ$. For the sake of clarity, we only show patchy solute particles in these systems.

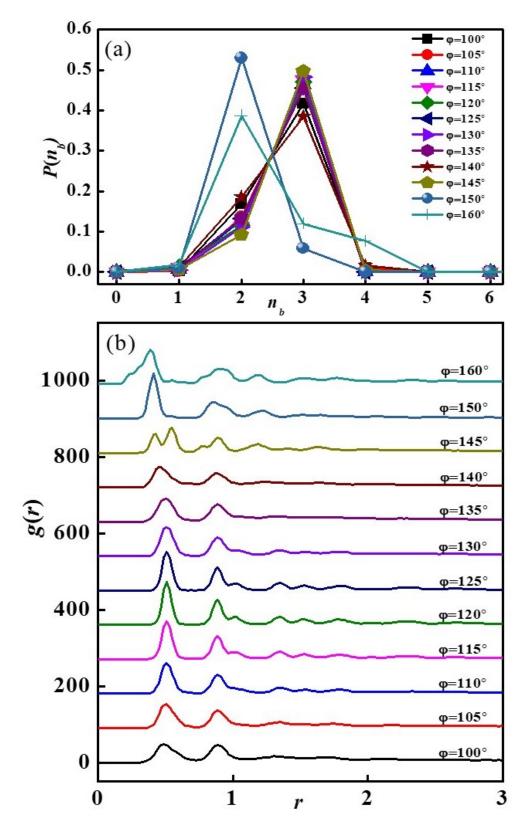


Figure S2: Structural characteristics of typical self-assembled structures in Fig.S1. (a) Probability distribution $P(n_b)$ of the number of bonds (i.e., contacts) n_b between attractive patches per patchy particle. (b) The radial distribution function g(r) (shifted upward for clarity).

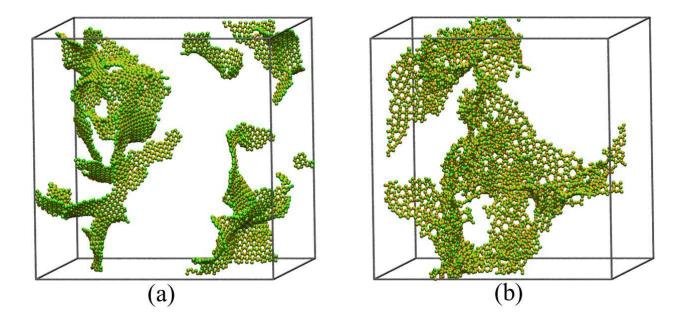


Figure S3: Typical self-assembled structures observed in Fig.2 with larger system size of 1.92×10^5 particles in a $40 \times 40 \times 40$ cubic box. (a) Hexagonal honeycomb lattice. (b) Square-octagon lattice.

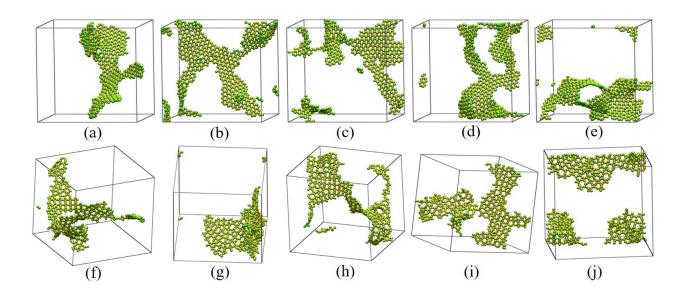


Figure S4: (a)-(e) Hexagonal honeycomb lattice structures for five independent simulations from different initial configurations. (f)-(j) Square-octagon lattice structures for five independent simulations from different initial configurations.

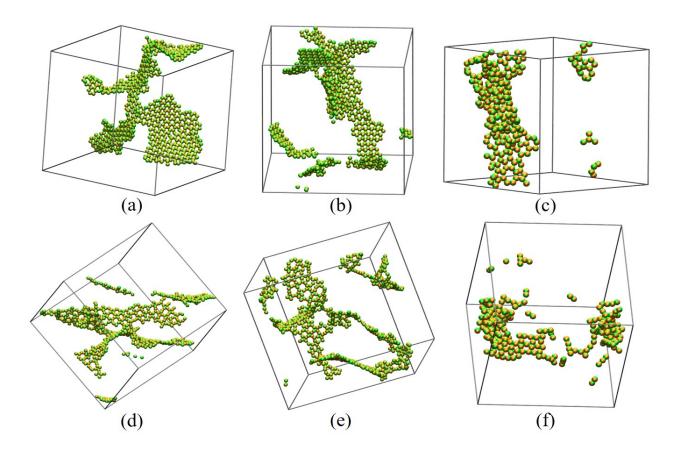


Figure S5: (a)-(c) Typical self-assembled structures for different α^R_{ij} with keeping $G\approx 10.00~k_BT$, $\theta^\kappa_m=45^\circ$ and $\varphi=120^\circ$: (a) honeycomb lattice at $\alpha^R_{ij}=490~(E\approx 6.6~\mathrm{Mpa})$, (b) honeycomb lattice at $\alpha^R_{ij}=621~(E\approx 8.0~\mathrm{Mpa})$, (c) disordered network structures at $\alpha^R_{ij}=1596~(E\approx 17.2~\mathrm{Mpa})$. (d)-(f) Typical self-assembled structures for different α^R_{ij} with keeping $G\approx 10.00~k_BT$, $\theta^\kappa_m=45^\circ$ and $\varphi=145^\circ$: (d) square-octagon lattice at $\alpha^R_{ij}=490~(E\approx 6.6~\mathrm{Mpa})$, (e) square-octagon lattice at $\alpha^R_{ij}=621~(E\approx 8.0~\mathrm{Mpa})$, (f) disordered network structures at $\alpha^R_{ij}=1596~(E\approx 17.2~\mathrm{Mpa})$.

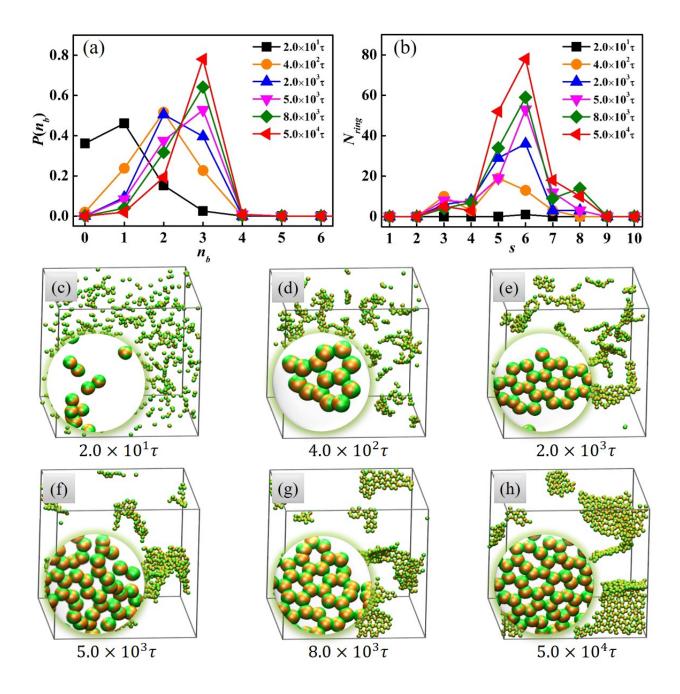


Figure S6: Kinetics of self-assembly of 2D network structures with irregular polygonal pores in Fig.S1h. (a) Probability distribution $P(n_b)$ of the number of bonds n_b between attractive patches per patchy particle at different times. (b) Time evolution of the number N_{ring} of polygonal rings with different size s. (c)-(h)Typical snapshots taken at different times. System of soft three-patch particles with $\alpha_{ij}^R = 396$, $\Phi = 3.0\%$, $G \approx 10.00 \ k_B T$, $\theta_m^K = 45^\circ$, and $\varphi = 135^\circ$ is chosen to show the formation kinetics.