Supporting Information

Surface Reconstruction of AgPd Nanoalloy Particles during Electrocatalytic Formate Oxidation Reaction[†]

Longfei Guo, ^{a,b} Fuyi Chen, ^{* a,b} Tao Jin, ^{a,b} Huazhen Liu, ^b Nan Zhang, ^a Yachao Jin, ^{a,b} Qiao Wang, ^{a,b} Quan Tang, ^{a,b} Bowei Pan ^b

^aState Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China

^bSchool of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China

*Corresponding author: E-mail: fuyichen@nwpu.edu.cn

Fig. S1. CV curves of AgPd/rGO catalysts prepared with different microwave heating parameters. (a) CV curves of AgPd/rGO prepared with heated at 800 W for 30 s, then stirred for 5 s, and repeated for 3, 5, 10 and 15 times. (b) CV curves of AgPd/rGO catalysts prepared with heated under 800 W for 30 s, then stirred for 5 s, and repeated for 3 times (the red line), compared with continuous heating for 90 s (the black line). All of the CV curves were recorded in N₂-saturated 1 M KOH + 1 M HCOOK electrolyte at a scan rate of 50 mV s⁻¹ and normalized with the area of glassy carbon (GC) electrode (0.196 cm²).

Fig. S2. CV curves of AgPd/rGO catalysts prepared with different trisodium citrate concentration of 0.24 M, 0.36 M, 0.48 M and 0.60 M recorded in N₂-saturated 1 M KOH + 1 M HCOOK electrolyte at a scan rate of 50 mV s⁻¹ normalized with the area of GC electrode (0.196 cm²).

Fig. S3. (a) CV curves of AgPd/rGO catalysts with the metal loading of 10%, 30% and 50% recorded in 1 M KOH electrolyte normalized with the area of GC electrode. (b) ECSAs of AgPd/rGO catalysts with the metal loading of 10%, 30% and 50%. (c) CV curves for FOR of AgPd/rGO catalysts with the metal loading of 10%, 30% and 50% recorded in 1 M KOH + 1 M HCOOK electrolyte. (d) FOR peak mass activity of AgPd/rGO catalysts with the metal loading of 10%, 30% and 50%. Unless indicated, all of the CV curves were recorded with a scan rate of 50 mV s⁻¹.

Fig. S4 SEM-EDS of (a) $Ag_{77}Pd_{23}/rGO$, (b) $Ag_{49}Pd_{51}/rGO$, (c) $Ag_{27}Pd_{73}/rGO$ and (d) $Ag_{51}Pd_{49}$ nanoalloy catalysts.

Fig. S5. SEM images of (a, b) Ag/rGO, (c, d) $Ag_{77}Pd_{23}/rGO$, (e, f) $Ag_{49}Pd_{51}/rGO$, (g, h) $Ag_{27}Pd_{73}/rGO$ and (i, j) Pd/rGO catalysts.

Fig. S6. SEM images of (a, b) $Ag_{49}Pd_{51}/rGO$, (c, d) $Ag_{51}Pd_{49}$ nanoalloy, and (e, f) Reduced graphene oxide (rGO) catalysts.

Fig. S7. TEM image of Ag₄₉Pd₅₁/rGO catalyst.

Fig. S8. CV curves of $Ag_{51}Pd_{49}$ nanoalloy and monometallic Pd catalysts recorded in N₂-saturated 1 M KOH + 1 M HCOOK electrolyte at a scan rate of 50 mV s⁻¹. The more negative formate oxidation onset potential and higher current density of $Ag_{51}Pd_{49}$ nanoalloy than monometallic Pd demonstrate the alloying effect of Ag with Pd on improving FOR catalytic activity of Pd catalyst.

Fig. S9. (a) Potential energy profiles for HCOO⁻ oxidation on various AgPd alloy, pure Ag and pure Pd surfaces. (b) Optimized configurations (side view) of the initial state (Bi-HCOO^{*}), transition state 1 (TS1), Intermediate state (Mono-HCOO^{*}), transition state 2 (TS2) and final state (CO2^{*} + H^{*}) for Ag₅₀Pd₅₀ (111) surface. C, O, H, Ag and Pd atoms are indicated in gray, red, white, light-blue and dark-blue, respectively. The oxidation of HCOO⁻ on Ag (111) plane requires 0.33 eV of energy in total, which is thermodynamically unfavorable, while the process on Ag₇₅Pd₂₅, Ag₅₀Pd₅₀, Ag₂₅Pd₇₅ and Pd (111) planes release 0.02, 0.43, 0.39, and 0.35 eV, respectively. Among them, the oxidation of HCOO⁻ on Ag₅₀Pd₅₀ (111) plane releases the highest energy, proving the thermodynamically advantage of Ag₅₀Pd₅₀ on catalyzing FOR. Moreover, the maximum activation energy of HCOO⁻ oxidation on Ag, Ag₇₅Pd₂₅, Ag₅₀Pd₅₀, Ag₂₅Pd₇₅ and Pd

(111) planes are 0.75, 0.65, 0.62, 0.69 and 0.94 eV, respectively. Obviously, $Ag_{50}Pd_{50}$ (111) plane requires the minimum activation energy to catalyze FOR, which is kinetically more favorable. Therefore, $Ag_{50}Pd_{50}$ should exhibit the best performance for catalyzing FOR.

Fig. S10. (a) CV curves of $Ag_{49}Pd_{51}/rGO$, $Ag_{51}Pd_{49}$ and commercial Pd/C catalysts in N₂-saturated 1 M KOH + 1 M HCOOK electrolyte. (b) ECSAs of $Ag_{49}Pd_{51}/rGO$, $Ag_{51}Pd_{49}$ and commercial Pd/C catalysts.

Fig. S11. (a) CV curves of $Ag_{77}Pd_{23}/rGO$, $Ag_{49}Pd_{51}/rGO$, $Ag_{27}Pd_{73}/rGO$ and Pd/rGO catalysts recorded in N₂-saturated 1 M KOH + 1 M HCOOK electrolyte. (b) CV curves of $Ag_{77}Pd_{23}/rGO$, $Ag_{49}Pd_{51}/rGO$, $Ag_{27}Pd_{73}/rGO$ and Pd/rGO catalysts recorded in N₂-saturated 1 M KOH electrolyte. (c) ECSAs of $Ag_{77}Pd_{23}/rGO$, $Ag_{49}Pd_{51}/rGO$, $Ag_{27}Pd_{73}/rGO$ and Pd/rGO catalysts. (d) CV curves of $Ag_{77}Pd_{23}/rGO$, $Ag_{49}Pd_{51}/rGO$, $Ag_{27}Pd_{73}/rGO$ and Pd/rGO catalysts. (d) CV curves of $Ag_{77}Pd_{23}/rGO$, $Ag_{49}Pd_{51}/rGO$, $Ag_{27}Pd_{73}/rGO$ and Pd/rGO catalysts recorded in N₂-saturated 1 M KOH electrolyte and $Ag_{77}Pd_{23}/rGO$, $Ag_{49}Pd_{51}/rGO$, $Ag_{27}Pd_{73}/rGO$ and Pd/rGO catalysts recorded in N₂-saturated 1 M KOH + 1 M HCOOK electrolyte normalized with ECSAs. All of the CV curves were obtained at a scan rate of 50 mV s⁻¹.

Fig. S12. CV curves of (a) Ag/rGO and (b) rGO catalysts recorded in N₂-saturated 1 M KOH and 1 M KOH + 1 M HCOOK electrolyte at a scan rate of 50 mV s⁻¹ normalized with the area of glassy carbon (GC) electrode (0.196 cm²).

Fig. S13. (a) The percentage of retaining activity as a function of cycling number for as-prepared $Ag_{49}Pd_{51}/rGO$ catalyst, unsupported $Ag_{51}Pd_{49}$ nanoalloys and commercial Pd/C catalyst. (b) The percentage of retaining ECSA as a function of cycling number for as-prepared $Ag_{49}Pd_{51}/rGO$ catalyst, unsupported $Ag_{51}Pd_{49}$ nanoalloys, and commercial Pd/C catalyst. (c, e, g) CV curves of as-prepared $Ag_{49}Pd_{51}/rGO$ catalyst, unsupported $Ag_{51}Pd_{49}$ nanoalloys, and commercial Pd/C catalyst. (c, e, g) CV curves of as-prepared $Ag_{49}Pd_{51}/rGO$ catalyst, unsupported $Ag_{51}Pd_{49}$ nanoalloys, and commercial Pd/C catalyst. (c, e, g) CV curves of as-prepared $Ag_{49}Pd_{51}/rGO$ catalyst, unsupported $Ag_{51}Pd_{49}$ nanoalloys and commercial Pd/C

catalyst at the 1 st, 100 th, 200 th, 300 th, 400 th and 500 th cycle. (d, f, h) CV curves of as-prepared $Ag_{49}Pd_{51}/rGO$ catalyst, unsupported $Ag_{51}Pd_{49}$ nanoalloys and commercial Pd/C catalyst before and after 100, 200, 300, 400 and 500 cycles normalized with the area of GC electrode. All of the CV curves were obtained at a scan rate of 50 mV s⁻¹.

Fig. S14. CV curves of monometallic Pd catalyst recorded in N₂-saturated 1 M KOH + 1 M HCOOK electrolyte under different upper limit potential of 0.0, 0.4, 0.8 and 1.2 V at a scan rate of 50 mV s⁻¹.

Fig. S15. XPS analysis of the $Ag_{49}Pd_{51}/rGO$ catalyst after FOR test in N₂-saturated 1M KOH + 1 M HCOOK electrolyte at different upper limit potential of 0.0 V, 0.4 V, 0.8 V and 1.2 V with a scan rate of 50 mV s⁻¹ for 10 cycles. (a) XPS survey spectra. (b, c) High-resolution spectra of C 1s and O 1s.

Fig. S16. (a) CV curves of $Ag_{49}Pd_{51}/rGO$ catalyst in N₂-saturated 1 M KOH electrolyte taken before and after FOR test at different upper limit potential of 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 V normalized with the area of glassy carbon (GC) electrode (0.196 cm²). (b) Enlarged details of the PdO and Ag₂O reduction regions in (a). (c) CV curves of Ag₅₁Pd₄₉ nanoalloy in N₂-saturated 1 M KOH electrolyte taken before and after FOR test at different upper limit potential of 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 V normalized with the area of glassy carbon (GC) electrode (0.196 cm²). (d) Enlarged details of the PdO and Ag₂O reduction regions in (a). Unless indicated, all of the CV

tests were performed in N₂-saturated 1 M KOH + 1 M HCOOK electrolyte at a scan rate of 50 mV s⁻¹.

Fig. S17. (a) CV curves of $Ag_{49}Pd_{51}/rGO$ catslyst in N₂-saturated 1 M KOH electrolyte taken after FOR test at different upper limit potential of 0.0, 0.4, 0.8 and 1.2 V at a scan rate of of 50 mV s⁻¹ normalized with the area of glassy carbon (GC) electrode (0.196 cm²).

Fig. S18. CV curves of (a) $Ag_{49}Pd_{51}/rGO$ and (b) $Ag_{51}Pd_{49}$ catalysts for the 1st, 5th and 10th cycles in N₂-saturated 1 M KOH electrolyte at a scan rate of of 50 mV s⁻¹ normalized with the area of glassy carbon (GC) electrode (0.196 cm²).

Fig. S19. (a, b) Geometry optimized model of AgPd nanoalloy on (a) side view and (b) top view. (c, d) Geometry optimized model of AgPd/graphene on (c) side view and (d) top view. The light-blue, dark-blue and gray balls represent the Ag, Pd and C atoms, respectively.

Fig. S20. XPS analysis of $Ag_{49}Pd_{51}/rGO$ catalyst before and after CV in N₂-saturated 1M KOH electrolyte at an upper limit potential of 0.4 V with a scan rate of 50 mV s⁻¹ for 10 cycles. (a, b) High-resolution spectra of Pd 3d and Ag 3d. (c) XPS survey spectra. (d, e) High-resolution spectra of C 1s and O 1s.

Fig. S21. HRTEM and corresponding FFT images of $Ag_{49}Pd_{51}/rGO$ catalyst (a, c) before and (b, d) after CV in N₂-saturated 1M KOH electrolyte at upper limit potential of 0.4 V with a scan rate of 50 mV s⁻¹ for 10 cycles.

Table S1. Mass fraction of Pd in the as-prepared catalysts measured by inductively coupled plasma

 optical emission spectrometer (ICP-OES).

	Mass [mg]	Volume [mL]	ID1 [mg mL ⁻¹]	ID2 [mg mL ⁻¹]	ID3 [mg mL ⁻¹]	Mass fraction [%]
Ag ₇₇ Pd ₂₃ /rGO	13.1	53	17.79	17.83	16.68	7.05
Ag ₄₉ Pd ₅₁ /rGO	15.6	100	28.59	28.45	27.59	18.08
Ag ₂₇ Pd ₇₃ /rGO	15.8	100	33.44	33.74	32.87	21.11
Pd/rGO	9.9	100	22.53	22.53	21.17	22.23

Table S2. The position and fraction of various surface compositions in Ag 3d and Pd 3d for Ag₄₉Pd₅₁/rGO catalyst after FOR test at different

	Ag 3d _{3/2}				Ag 3d _{5/2}				Aσ/(Aσ+Pd)
Sample	Sample Ag(0)		Ag(II)		Ag(0)		Ag(II)		[%]
	Position [eV]	Fraction [%]	Position [eV]	Fraction [%]	Position [eV]	Fraction [%]	Position [eV]	Fraction [%]	
0.0 V	374.00	73.04	374.57	26.96	368.00	73.04	368.57	26.96	48.13
0.4 V	374.04	71.77	374.54	28.23	368.04	71.77	368.54	28.23	39.94
0.8 V	374.54	68.08	374.51	31.92	368.08	68.08	368.54	31.92	37.58
1.2 V	374.17	92.69	375.20	7.31	368.17	92.69	369.20	7.31	41.66

upper limit potential of 0.0, 0.4, 0.8 and 1.2 V with a scan rate of 50 mV s⁻¹ for 5 cycles.

	Pd 3d _{3/2}				Pd 3d _{5/2}				Pd/(Ag+Pd)
Sample	Pd	Pd(0)		Pd(II)		Pd(0)		(II)	[%]
	Position [eV]	Fraction [%]	Position [eV]	Fraction [%]	Position [eV]	Fraction [%]	Position [eV]	Fraction [%]	
0.0 V	340.77	60.14	341.93	39.86	335.47	60.14	336.63	39.86	51.87
0.4 V	340.83	59.31	341.93	40.69	335.53	59.31	336.68	40.69	60.06
0.8 V	340.83	58.94	342.07	41.06	335.53	58.94	336.77	41.06	62.42
1.2 V	340.78	59.64	341.91	40.36	335.47	59.64	336.61	40.36	58.34

Table S3. The position and fraction of various surface compositions in Ag 3d and Pd 3d for $Ag_{49}Pd_{51}/rGO$ catalyst before and after CV in N_2 -

	Ag 3d _{3/2}				Ag 3d _{5/2}				Aσ/(Aσ+Pd)
Sample	Ag(0)		Ag(II)		Ag(0)		Ag(II)		[%]
	Position [eV]	Fraction [%]	Position [eV]	Fraction [%]	Position [eV]	Fraction [%]	Position [eV]	Fraction [%]	
Initial	374.06	76.08	374.53	23.92	368.05	76.08	368.76	23.92	51.66
CV treated	373.82	72.02	374.30	27.98	367.79	72.02	369.28	27.98	38.15
		Pd 3	3d _{3/2}			Pd	3d _{5/2}		Pd/(Ag+Pd)
Sample	Pd	Pd 3	3d _{3/2} Pd	(II)	Po	Pd 3	3d _{5/2} Pd	(II)	Pd/(Ag+Pd) [%]
Sample	Pd Position [eV]	Pd 3 l(0) Fraction [%]	3d _{3/2} Pd Position [eV]	(II) Fraction [%]	Po Position [eV]	Pd 3 I(0) Fraction [%]	3d _{5/2} Pd Position [eV]	(II) Fraction [%]	Pd/(Ag+Pd) [%]
Sample Initial	Pd Position [eV] 340.86	Pd 3 (0) Fraction [%] 63.54	3d _{3/2} Pd Position [eV] 341.99	(II) Fraction [%] 36.46	Position [eV] 335.58	Pd 3 d(0) Fraction [%] 63.54	3d _{5/2} Pd Position [eV] 336.71	(II) Fraction [%] 36.46	Pd/(Ag+Pd) [%] 48.34

saturated 1M KOH electrolyte at an upper limit potential of 0.4 V with a scan rate of 50 mV s⁻¹ for 10 cycles.