Supporting Information

Enhanced activity of vancomycin by encapsulation in hybrid magnetic nanoparticles conjugated to a cell-penetrating peptide

Short title: Vancomycin hybrid magnetic nanoparticles

Wenjie Zhang¹, Reza Taheri-Ledari², Zoleikha Hajizadeh², Ehsan Zolfaghari², Mohammad Reza Ahghari², Ali

Maleki^{*,2}, Michael R. Hamblin^{3,4,5,*}, Ye Tian^{*,6}

¹Department of Nuclear Medicine, West China Hospital of Sichuan University, #37 Guoxue Alley, Chengdu, 610041, Sichuan province, P.R. China

²Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran

³Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA

⁴Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA

⁵Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South

Africa

⁶ West China Hospital of Stomatology, Sichuan University, Sichuan province, P.R. China

*Corresponding authors. E-mail addresses: <u>maleki@iust.ac.ir</u> (A. Maleki), <u>hamblin@helix.mgh.harvard.edu</u> (M.R. Hamblin), <u>tianye@scu.edu.cn</u> (Ye Tian).

Content	Page
Figure S1. Physiochemical properties of synthesized CPP*a	S2
Table S1 . Related areas and retention times of all present ingredients and impurities of CPP ^b	S 3
Table S2. Detailed information of the synthesized CPP (LC-MS analysis)	S4
Table S3. In vitro VAN release using UV-vis spectrophotometry	S 5
Figure S2. UV-vis spectra of fushin and crystal violet for cell staining	S6
Figure S3. Photoluminescence (PL) spectra of MCCC@VAN	S7
Figure S4 . TGA curves of Fe ₃ O ₄ /SiO ₂ /PVA/SH (4) and Fe ₃ O ₄ /SiO ₂ /PVA/SH-12%VAN (5)	S8
Figure S5. TEM images of the bacteria cells after MCCCs uptake.	S9
Statistical study and estimation of the errors and standard deviations for OD experiment	S10
Table S4. Statistical data of OD experiment on S. aureus cell line	S12
Table S5. Statistical data of OD experiment on E. coli cell line	S13
Table S6. Statistical data of ZOI experiment	S14

**Cell-penetrating hexapeptide*

^a Predicted by online software (Pepcalc.com)

^b Obtained from RP-HPLC

PepCalc.com - Peptide property calculator

N-terminus	Sequence		C-terminus	AA code used
Fmoc 🗸	arghisproph	ealagly	AFC	🤍 single-lette 🗸 🤇 Calculate!
	Disulphide c	onnectivity		
Show abbrevi	ations	20 standard amino acid	s modified amino acids	unusual amino acids
Sequence : Single letter co	submissio de:	n arghisprophealagly		Get a quotation
Sequence i	interpreta	tion		
Single letter co	de:	Fmoc- ARGHISPROP HE	ALAGLY -AFC	
Triple letter co	de:	Fmoc- Ala - Arg - Gly - Gly - Leu - Tyr -AFC	His - Ne - Ser - Pro - Arg - Orn - P	ro - His - Glu - Ala - Leu - Ala -
Physiocher	nical prop	erties		Net charge vs pH
Number of res	idues:	18		2 ↓
Molecular weig	ght:	906.59 g/mol	notes on MW	
Extinction coef	ficient:	1280 M ⁻¹ cm ⁻¹	notes on Ext. Coefficient	<u> </u>
Iso-electric point:		pH 10.93	notes on pl	7 pH
Net charge at p	pH 7:	1.2	notes on net charge	-4
Estimated solu	bility:	Poor water solubility.	notes on solubility	Ŧ

Figure S1. Physiochemical properties of synthesized CPP

Result Table (Uncal - QC-97739 - L-3500 UV-Vis Detector 1)

	Reten. Time [min]	Area [mAU.s]	Height [mAU]	Area [%]	Height [%]	W05 [min]	Compound Name
1	46.597	44.018	2.709	0.098	0.3	0.24	
2	48.410	43883.229	822.111	97.923	94.3	0.83	
3	50.683	138.138	10.878	0.308	1.2	0.26	
4	50.980	382.581	24.197	0.854	2.8	0.22	
5	55.453	366.221	12.178	0.817	1.4	0.41	
	Total	44814.186	872.072	100.000	100.0		

Table S1. Related areas and retention times of all present ingredients and impurities of CPP

Qualitative Analysis Report

Data Filename Sample Type Instrument Name Acq Method DA Method mr-rt-2392-pep-.d Sample Instrument 1 General n.m hashiri.m

Sample Name Position User Name IRM Calibration Status Comment mr-it-2392-pep-Vial 11

Success

User Spectra

Peak List						
Z	Abund.					
	918					
0	5790					
1	3630					
1	900					
	989					
	934					
	6359					
	3477					
	1396					
	1109					
	z 1 1					

--- End Of Report ---

Table S2. Detailed information of the synthesized CPP (LC-MS analysis).

Entry	Medium (pH)	Time (min)	$A^{a^{*}}(a. u.)$
1	Acetate buffer 0.1 M (5.6)	15	0.198
2	Acetate buffer 0.1 M (5.6)	30	0.322
3	Acetate buffer 0.1 M (5.6)	60	0.41
4	Acetate buffer 0.1 M (5.6)	120	0.396
5	Acetate buffer 0.1 M (5.6)	180	0.382
6	PBS 0.1 M (7.2)	15	0.09
7	PBS 0.1 M (7.2)	30	0.213
8	PBS 0.1 M (7.2)	60	0.315
9	PBS 0.1 M (7.2)	120	0.376
10	PBS 0.1 M (7.2)	180	0.418
11	PBS 0.1 M (7.2)	240	0.416
12	PBS 0.1 M (9.0)	15	0.191
13	PBS 0.1 M (9.0)	30	0.346
14	PBS 0.1 M (9.0)	60	0.414
15	PBS 0.1 M (9.0)	120	0.412
16	PBS 0.1 M (9.0)	180	0.402

 Table S3. In vitro VAN release using UV-vis spectrophotometry.

^aUV-vis absorbance at 220 nm, *all samples were diluted 1/100 with medium.

Figure S2. UV-vis spectra of fuchsin and crystal violet for cell staining.

Figure S3. Photoluminescence (PL) spectra of MCCC@VAN.

Figure S4. TGA curves of $Fe_3O_4/SiO_2/PVA/SH$ (4) and $Fe_3O_4/SiO_2/PVA/SH-12\%VAN$ (5)

Figure S5. TEM images of the internalized MCCC@12%VAN NPs into the: *S. aureus* cells after 30 (a) and 180 min (b), and *E. coli* cells after 30 (c) and 180 min (d) [dark particles are likely co-localized and attached onto the surface of the bacteria cell, and light particles have been internalized]. In the image (d) particle accumulation has also been occurred in some areas.

Statistical study and estimation of the errors and standard deviations for OD experiment:

To perform a statistical assessment for OD experiment, three identical samples of each condition (totally nine conditions) were tested using a 96-well plate via incubation at 37 °C, for 30, 60, and 180 min (see figure below). In this regard, standard deviation and OD error were calculated and reported in Table S4 and S5.

The calculation methods for standard deviation and the errors are explained below:

- Standard deviation for each condition has been obtained by excel software.
- To obtain error for each condition, the average OD value for three wells was calculated and the absolute error (±) was obtained using maximum and minimum values of OD (see following figure). For instance, for *S. aureus* (control) after 180 min incubation OD values for three identical samples are as below:

Standard deviation (calculated by excel software) = 0.0025Absolute error = $\pm (OD_{max} - OD_{min} / 2) = \pm 0.0025$ Relative error = absolute error / real value = 0.0025 / 0.203 = 0.012%Relative error = (absolute error / real value) × 100 = 1.23%

Then, cell-killing potency (%CKP) of each sample is calculated by the following equation:

 $%CKP = -(A/A_0 - 1) \times 100$

Whereas, A is UV-vis absorbance of the desired sample, and A_0 is the UV-vis absorbance of the control (*S. aureus* and *E. coli*) at each time (30, 60, and 180 min).

Time	Conditions	$OD^{a}(a.u.)$	STDEV ^b	%Rel. E ^c	CKP ^d (%)
(min)					
	S. aureus (control)	0.067	0.003	4.4	-
	S. aureus + MCCC (0.04 mg/mL)	0.064	0.004	6.2	4.5
	S. aureus + CPP (0.04 mg/mL)	0.062	0.005	8.0	7.5
	S. aureus + VAN (0.0048 mg/mL)	0.055	0.005	9.0	17.9
30	S. aureus + VAN (0.04 mg/mL)	0.038	0.006	17.1	43.3
	S. aureus + $Fe_3O_4/PVA@12\%VAN (0.04 mg/mL)$	0.052	0.003	5.7	22.4
	S. aureus + MCCC@12%VAN (0.01 mg/mL)	0.05	0.003	6.0	25.4
	S. aureus + MCCC@12%VAN (0.025 mg/mL)	0.017	0.003	20.5	74.6
	S. aureus + MCCC@12%VAN (0.04 mg/mL)	0.012	0.003	25	82
	S. aureus (control)	0.167	0.003	2.0	-
	S. aureus + MCCC (0.04 mg/mL)	0.159	0.004	2.5	4.8
	S. aureus + CPP (0.04 mg/mL)	0.149	0.002	1.7	10.8
60	S. aureus + VAN (0.0048 mg/mL)	0.12	0.002	2.0	28.1
	S. aureus + VAN (0.04 mg/mL)	0.036	0.004	11.1	78.5
	S. aureus + $Fe_3O_4/PVA@12\%VAN (0.04 mg/mL)$	0.05	0.003	6.0	70
	S. aureus + MCCC@12%VAN (0.01 mg/mL)	0.041	0.002	6.2	75.5
	S. aureus + MCCC@12%VAN (0.025 mg/mL)	0.016	0.002	15.6	90.4
	S. aureus + MCCC@12%VAN (0.04 mg/mL)	0.015	0.003	23.3	91
	S. aureus (control)	0.203	0.002	1.2	-
	S. aureus + MCCC (0.04 mg/mL)	0.19	0.015	7.8	6.4
	S. aureus + CPP (0.04 mg/mL)	0.181	0.003	1.6	10.8
180	S. aureus + VAN (0.0048 mg/mL)	0.14	0.002	1.7	31.0
	S. aureus + VAN (0.04 mg/mL)	0.023	0.002	17.4	88.7
	S. aureus + $Fe_3O_4/PVA@12\%VAN (0.04 mg/mL)$	0.043	0.002	5.8	78.8
	S. aureus + MCCC@12%VAN (0.01 mg/mL)	0.029	0.004	16.0	85.7
	S. aureus + MCCC@12%VAN (0.025 mg/mL)	0.014	0.003	21.4	93.1
	S. aureus + MCCC@12%VAN (0.04 mg/mL)	0.005	0.0002	31.0	97.5

Table S4. Statistical data of OD experiment on S. aureus cell line.

^{*a*} OD: average optical density for three identical samples

^b STDEV: standard deviation of three identical samples

^c %*Rel. E: relative error percentage for three identical samples*

^{*d*} *CKP*: *bacteria cell-killing potency during 180 min*

It should be noted that in low concentrations the relation between the concentration and UV-vis absorbance may not be linear (but it was assumed linear).

Time (min)	Conditions	OD (a.u.)	STDEV	%Rel. E	CKP (%)
	E. coli (control)	0.461	0.004	0.97	-
	E. coli + MCCC (0.04 mg/mL)	0.452	0.003	0.44	1.9
	E. coli + CPP (0.04 mg/mL)	0.446	0.006	1.3	3.2
	E. coli + VAN (0.0048 mg/mL)	0.42	0.02	4.7	8.9
30	E. coli + VAN (0.04 mg/mL)	0.386	0.005	1.3	16.3
	E. coli + Fe ₃ O ₄ /PVA@12%VAN (0.04 mg/mL)	0.408	0.005	1.2	11.5
	E. coli + MCCC@12%VAN (0.01 mg/mL)	0.402	0.007	1.7	12.8
	E. coli + MCCC@12%VAN (0.025 mg/mL)	0.395	0.005	1.3	14.3
	E. coli + MCCC@12%VAN (0.04 mg/mL)	0.267	0.003	1.1	42
	E. coli (control)	0.484	0.005	1.1	-
	E. coli + MCCC (0.04 mg/mL)	0.468	0.004	0.85	3.3
60	E. coli + CPP (0.04 mg/mL)	0.456	0.005	1.1	5.8
00	E. coli + VAN (0.0048 mg/mL)	0.42	0.005	1.3	13.2
	E. coli + VAN (0.04 mg/mL)	0.285	0.005	1.9	41.1
	E. coli + Fe ₃ O ₄ /PVA@12%VAN (0.04 mg/mL)	0.379	0.01	2.6	21.7
	E. coli + MCCC@12%VAN (0.01 mg/mL)	0.34	0.005	1.4	29.7
	E. coli + MCCC@12%VAN (0.025 mg/mL)	0.315	0.004	1.3	34.9
	E. coli + MCCC@12%VAN (0.04 mg/mL)	0.115	0.003	4.3	76.2
	E. coli (control)	0.558	0.007	1.3	-
	E. coli + MCCC (0.04 mg/mL)	0.54	0.02	3.7	3.2
	E. coli + CPP (0.04 mg/mL)	0.526	0.005	1.0	5.7
180	E. coli + VAN (0.0048 mg/mL)	0.43	0.01	2.3	22.9
	E. coli + VAN (0.04 mg/mL)	0.2	0.02	10	64.1
	E. coli + Fe ₃ O ₄ /PVA@12%VAN (0.04 mg/mL)	0.31	0.03	9.9	44.4
	E. coli + MCCC@12%VAN (0.01 mg/mL)	0.251	0.005	2.0	55.0
	E. coli + MCCC@12%VAN (0.025 mg/mL)	0.204	0.004	2.2	63.4
	E. coli + MCCC@12%VAN (0.04 mg/mL)	0.049	0.003	7.1	91.2

 Table S5. Statistical data of OD experiment on E. coli cell line.

Relative errors for ZOI experiment:

This test was repeated for three times for each sample. Standard deviations and relative errors were calculated via the explained method, and reported in table below:

Cell line	Sample ^a	ZOI ^b (cm)	STDEV	%Rel. E
	СРР	Trace	-	-
	MCCC	Trace	-	-
S. aureus	VAN	1.25	0.02	1.6
	Fe ₃ O ₄ /PVA@12%VAN	0.46	0.01	2.1
	MCCC@12%VAN	1.375	0.01	0.7
E. coli	СРР	Trace	-	-
	MCCC	Trace	-	-
	VAN	0.875	0.02	2.3
	Fe ₃ O ₄ /PVA@12%VAN	0.41	0.01	2.4
	MCCC@12%VAN	0.125	0.01	0.9

Table S6. Statistical data of ZOI experiment.

^{*a*} The same weight (0.01 g) was used for all samples.

^bAverage value is reported for three times repeating the experiment.