Supporting Information

Trace fluorinated-carbon-nanotubes induced lithium dendrite

elimination for high-performance lithium-oxygen cells

Hao Cheng,^a Yangjun Mao,^a Yunhao Lu,^b Peng Zhang,^c Jian Xie^{*a,d} and Xinbing Zhao^{a,d}

Fig. S1 SEM image of the commercial fluorinated carbon nanotubes.

^a State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China. E-mail: xiejian1977@zju.edu.cn; Fax: +86-571-87951451; Tel: +86-571-87951451

^b Department of Physics, Zhejiang University, Hangzhou 310027, P. R. China

c Hangzhou Skyrich Power Co., LTD, Hangzhou 310022, P. R. China

^d Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, P. R. China

Fig. S2 Cross-sectional SEM images of (a) bare Liand (b, c) LFCNT electrodes.

Fig. S3 XRD patterns of LFCNT and bare Li in open air from 0 to 75 h.

Fig. S4 Equivalent circuit for the fitting of the electrochemical impedance, where R_e is determined by the ionic conductivity of electrolyte, $R_{\rm f}$ and $Q_{\rm l}$ correspond to the surface film resistance and relaxation capacitance, R_{ct} and Q_2 correspond to the charge transfer resistance and double-layer capacitance, and Z_w is related to the bulk diffusion of Li ions.

Sample	$R_{\rm e}(\Omega)$	$R_{\mathrm{f}}(\Omega)$	$R_{\mathrm{ct}}\left(\Omega\right)$	$R_{\text{interface}}\left(\Omega\right)$
LFCNT, 0 h	7.0	22.5	124.3	146.8
LFCNT, 20 h	4.8	33.9	216.9	250.8
LFCNT, 50 h	5.2	42.0	299.9	341.9
LFCNT, 100 h	9.5	49.0	349.1	398.1
LFCNT, 200 h	6.1	52.8	369.4	422.2
LFCNT, after cycling	7.9	20.2	21.0	41.2
Bare Li, 0 h	3.0	101.6	198.4	300.0
Bare Li, 20 h	3.2	188.0	272.1	460.1
Bare Li, 50 h	4.3	253.5	361.2	614.7
Bare Li, 100 h	2.6	336.9	402.2	739.1
Bare Li, 200 h	3.3	353.0	403.3	756.3
Bare Li, after cycling	3.9	32.6	48.5	81.1

Table S1 Fitting results of the Nyquist plots in Fig. 2b and c using the equivalent circuit in Fig. S4.

Fig. S5 Voltage profiles of LFCNT and bare Li electrode in symmetric cells at 0.5 mA cm^{-2} with a capacity of 1 mAh cm⁻² in the (a) 1st cycle, (b) 50th cycle, and (c) 300th cycle.

Fig. S6 Galvanostatic discharge/charge profiles of LFCNT and bare Li electrodes in symmetric cells at 1 mA cm⁻² with a capacity of 3 mAh cm⁻².

Fig. S7 (a) Model of the bilayer fluorinated graphene, and (b) the corresponding side view of Fig. 4g.

Fig. S8 Galvanostatic discharge/charge profiles of LFCNT and bare Li electrodes in symmetric cells based on 1 M LiClO₄/TEGDME tested in O_2 atmosphere at 1 mA cm⁻² with a capacity of 1 mAh cm⁻².

Fig. S9 Nyquist plots of the Li–O₂ cells with bare Li and LFCNT electrode.

Table S2 Fitting results of the Nyquist plots in Fig. S9 using the equivalent circuit in Fig. S4.

Sample	$R(\mathbf{O})$	$R_{1}(0)$	Q_1		- R(0)	Q_2	
Sample	$\Lambda_{e}(22)$	$\Lambda_{\rm f}(22)$	Y	п	$\Lambda_{\rm ct}$ (22)	Y	n
Cell with bare Li	83.4	243.5	4.6×10 ⁻⁶	0.79	1878.0	2.3×10 ⁻⁶	0.92
Cell with LFCNT	68.3	241.0	5.7×10 ⁻⁶	0.72	932.0	1.3×10 ⁻⁵	0.77

Fig. S10 Discharge profiles of Li–O₂ cells with bare Li and LFCNT electrode at 100 mA g⁻¹.

Fig. S11 Discharge profile of Li/MnO_2 cell in pure Ar.

Cathode	Anode	Currentdensity	Specific capacity	Cycle number	Reference
δ-MnO ₂	LFCNT	400 mA g ⁻¹ (0.2 mA cm ⁻²)	1000 mAh g ⁻¹	135	This work
Ketjen black carbon	Li stabilized by LiTNFSI	500 mA g ⁻¹	500 mAh g ⁻¹	49	[1]
Ketjen black carbon	phosphorene-coated Li	250 mA g ⁻¹	1000 mAh g ⁻¹	50	[2]
CNT-Based Air Electrode	Li with highly concentrated electrolyte	0.1 mA cm ⁻²	1000 mAh g ⁻¹	55	[3]
MWCNTs electrode	CPL-Coated Li	250 mA g ⁻¹	$1000 \text{ mAh } \text{g}^{-1}$	60	[4]
Ketjen black carbon	DOA-treated Li	100 mA g ⁻¹	500 mAh g ⁻¹	65	[5]
CNT-based air electrode	Li stabilized by highly-concentrated electrolyte	0.1 mA cm ⁻²	$600 \text{ mAh } \text{g}^{-1}$	90	[6]
Porous graphene cathode	porous graphene/Li anode.	1000 mA g ⁻¹	1000 mAh g ⁻¹	100	[7]
Super P	FEC-treated Li	300 mA g ⁻¹	$1000 \text{ mAh } \text{g}^{-1}$	106	[8]

Table S3 Comparison of electrochemical performance of Li–O₂ cells with various Li anodes.

References

- 1 B. Tong, J. Huang, Z. B. Zhou and Z. Q. Peng, Adv. Mater., 2017, 30, 1704841.
- 2 Y. J. Kim, D. Koo, S. Ha, S. C. Jung, T. Yim, H. Kim, S. K. Oh, D. M. Kim, A. Choi, Y. Kang, K. H. Ryu, M. Jang, Y. K. Han, S. M. Oh and K. T. Lee, *ACS Nano*, 2018, **12**, 4419–4430.
- 3 B. Liu, W. Xu, P. F. Yan, X. L. Sun, M. E. Bowden, J. Read, J. F. Qian, D. H. Mei, C. M. Wang and J. G. Zhang, *Adv. Funct. Mater.*, 2016, **26**, 605–613.
- 4 D. J. Lee, H. Lee, Y. J. Kim, J. K. Park and H. T. Kim, Adv. Mater., 2016, 28, 857-863.
- 5 X. Zhang, Q. M. Zhang, X. G. Wang, C. Y. Wang, Y. N. Chen, Z. J. Xie and Z. Zhou, *Angew. Chem. Int. Ed.*, 2018, **57**, 12814–12818.
- 6 B. Liu, W. Xu, P. F. Yan, S. T. Kim, M. H. Engelhard, X. L. Sun, D. H. Mei, J. Cho, C. M. Wang and J. G. Zhang, *Adv. Energy Mater.*, 2017, 7, 1602605.
- 7 G. Huang, J. H. Han, C. C. Yang, Z. Q. Wang, T. Fujita, A. Hirata and M. W. Chen, *NPG Asia Mater.*, 2018, **10**, 1037–1045.
- 8 Q. C. Liu, J. J. Xu, S. Yuan, Z. W. Chang, D. Xu, Y. B. Yin, L. Li, H. X. Zhong, Y. S. Jiang, J. M. Yan and X. B. Zhang, *Adv. Mater.*, 2015, **27**, 5241–5247.

Information for videos

Video 1 Dynamic changes of the LFCNT electrodeat 1 mA cm⁻² without separator.

Video 2 Dynamic changes of the bare Li electrodeat 1 mA cm⁻² without separator.

Video 3 Dynamic changes of the LFCNT electrode at 1 mA cm⁻² with separator.

Video 4 Dynamic changes of the bare Li electrodeat 1 mA cm⁻² with separator.