Electronic Supplementary Information:

N-doped Carbon Coated Bismuth Nanorod with Hollow Structure as

Anode for Superior-Performance Potassium-Ion Batteries

Hang Li^a, Chunxia Zhao^a, Yameng Yin^a, Yujie Zou^a, Yang Xia^a, Qinyou An^a,

Zelang Jian^{a,} *, Wen Chen^a

^a State Key Laboratory of Advanced Technology for Materials Synthesis and

Processing, School of Materials Science and Engineering, Wuhan University of

Technology, 430070, Wuhan, P. R. China.

* E-mail address: zelangjian@whut.edu.cn

Experimental Section:

Materials Synthesis: A simple hydrothermal method was used to prepare the Bi_2S_3 nanorods. Na₂S·9H₂O, Bi(NO)₃·5H₂O, and urea were dissolved in deionized water, glycol, and deionized water, respectively. Subsequently, the solution was mixed and transferred to stainless steel autoclave with Teflon-liner at 120 °C for 24 h. The product was washed with deionized water and alcohol. For carbon coating, asprepared Bi₂S₃ nanorods, sodium dodecyl sulfate and pyrrole were added into deionized water with stirring and ultrasound. Then, (NH₄)₂S₂O₈ solution was added into the mixture and complete reacted. After that, the product was washed by water and dried overnight. Finally, Bi@N-CT was prepared by annealing under N₂ atmosphere 650 °C for 2 hours. Nickel-based Prussian White at $(K_{1.74}Ni[Fe(CN)_6]_{0.95}\square_{0.05} \cdot 1.45H_2O$ (note as KNF) was synthesized via a coprecipitation of potassium ferrocyanide and nickel salt.

Materials characterization: XRD patterns of the samples were characterized by the X-ray diffractometer (Empyrean, PANalytical) with Cu Kα radiation (0.154 nm). TGA data were measured using a thermal analyzer (STA409PC, NETZSCH) from 50 °C to 800 °C at a heating rate of 5 °C·min⁻¹ under an oxygen atmosphere. The morphologies of the samples were observed using FESEM (Zeiss Ultra Plus). The internal structure of sample was analyzed by TEM (Talos F200S, FEI). For *in-situ* XRD analysis (D8 Advance, Bruker), the electrode was placed on an iron net near a beryllium window. The XRD signals were collected by the planar detector in a still mode. **Electrochemical measurements:** To test the electrochemical performance, a slurry was prepared by mixing Bi@N-CT, super-p, and a binder sodium polyacrylate with a weight ratio of 70: 20: 10 in deionized water. The slurry was spread onto the aluminum foil and dried in a vacuum oven at 60 °C. The electrodes were assembled into CR2032 coin cells with the potassium metal as the counter electrode in an argon-filled glove-box. The electrolyte solution was 1 M KPF₆ in 1, 2-dimethoxyethane (DME). Cells were tested on a Land Battery Testing System and Neware Testing System with galvanostatic charge and discharge in the voltage range of 0.01~1.5 V. Cyclic voltammogram (CV) tests were performed with an Autolab PGSTAT30 electrochemical workstation (Metrohm).

DFT calculations of K₃Bi₂ parameters: The structure of K₃Bi₂ is based on the Cs₃Bi₂ (COD: 4116198) with the element replacement from Cs to K. The general gradient approximation was employed in the form of a Perdew-Burke-Ernzerhof solid (PBEsol) exchange-correlation functional using CASTEP program. The plane wave cutoff was set to 600 eV. Self-consistency tolerance is set as 1.0×10^{-8} eV. The force convergence criterion on the atoms is 0.02 eV Å⁻¹.

Supporting Figures:

Fig. S1. FESEM images of Bi_2S_3 @PPy.

Fig. S2. FESEM image of Bi@N-CT.

Fig. S3. a) FESEM image of N-C. b) Discharge/charge curves of N-C.

Fig. S4. TGA curves of Bi@N-CT under oxygen atmosphere.

Fig. S5. First five discharge/charge curves of Bulk Bi for PIBs.

Fig. S6. CV curves of Bi@N-CT for PIBs.

Fig. S7. a) Cycling performance of Bi@N-CT as anode for PIBs at 1C. b) The corresponding EIS spectra over different cycles.

Fig. S8. The cycling performance of Bi@N-CT for PIBs with a KPF₆-EC/DEC electrolyte.

Fig. S9. TEM images of the Bi@N-CT at a) first fully discharged state and b) first charged state at 1C; c) cycled over1000 cycles.

Fig. S10. Potassium storage performance of the $K_{1.74}Ni[Fe(CN)_6]_{0.95}\Box_{0.05}\cdot 1.45H_2O$ //Bi@N-CT coin type full cells. a) Cycling performance. b) Rate capability.

Fig. S11. Crystal structure and XRD pattern of K₃Bi₂ simulated by DFT calculation.

$$Bi_{2}S_{3} \xrightarrow{0}{C} Bi$$

$$Bi + C \xrightarrow{0}{2} Bi_{2}O_{3} + CO_{2}$$
(S1)
(S2)

Sample	Current Density (A g ⁻¹)	Cycle Number	Capacity Retention (%)	Reference
This Work	3.8	1000	88	
Bi/rGO	0.05	50	66	Ref. 1
Bi@3DGF	1	400	71	Ref. 2
UCF@ CNs@BiN	0.1	600	76	Ref. 3
Bi@N-C	10	1000	76	Ref. 4
Bi@C	0.2	600	85	Ref. 5

Table S1. Capacity retentions of previous bismuth-based materials for PIBs.

Reference:

- [1] Q. Zhang, J. Mao, W. K. Pang, T. Zheng, V. Sencadas, Y. Chen, Y. Liu and Z. Guo, *Adv. Energy Mater.*, 2018, 8, 1703288.
- [2] X. Cheng, D. Li, Y. Wu, R. Xu and Y. Yu, J. Mater. Chem. A, 2019, 7, 4913.
- [3] S. Su, Q. Liu, J. Wang, L. Fan, R. Ma, S. Chen, X. Han and B. Lu, ACS Appl. Mater. Interfaces, 2019, 11, 22474.
- [4] H. Yang, R. Xu, Y. Yao, S. Ye, X. Zhou and Y. Yu, *Adv. Funct. Mater.*, 2019, 29, 1809195.
- [5] R. Zhang, J. Bao, Y. Wang, C and F. Sun, Chem. Sci., 2018, 9, 6193.