Supporting Information

One-step synthesis of MnO_x/PPy nanocomposite as a high-performance cathode for rechargeable zinc-ion battery and insight into its energy storage mechanism

Zixuan Li^a, Yuan Huang^{a,*}, Jiyan Zhang^a, Shunyu Jin^b, Shengdong Zhang^a, Hang Zhou^{a,*}

 ^a School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
^b Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei 23000, PR China

* Corresponding author.

E-mail addresses: huangyuan@pkusz.edu.cn (Y. Huang), zhouh81@pkusz.edu.cn (H. Zhou)

Fig. S1. Pore size distribution of the MnO_x/PPy composite.

Fig. S2. Mn 3s XPS spectrum of the MnO_x/PPy composite.

The XPS of the Mn 3s regions was further performed. As shown in Fig. S2, the energy differences of Mn 3s multiplet splittings for MnO_x/PPy is 5.1 eV. The value is consistent with the mixed (III and IV) valences of Mn (5.5 eV for Mn_2O_3 ; 4.5 eV for MnO_2) [1,2].

Fig. S3. SEM image of pure PPy electrode.

Fig. S4. (a) XPS and (b) XRD pattern of the MnO_x .

The MnO_x/PPy composite was heat treated at 500 °C in air to remove the shielding of PPy. The XPS and XRD results of MnO_x (Fig. S4) verified the coexistence of Mn³⁺ and Mn⁴⁺ in the MnO_x. However, compared with XPS result of MnO_x/PPy, the Mn³⁺/Mn⁴⁺ ratio in the MnO_x is higher than that in the MnO_x/PPy composite. Moreover, the crystallinity of MnO_x increases.

Fig. S5. (a) Cyclic voltammetry curves of Zn-MnO_x/PPy and Zn-MnO_x batteries. (b) Discharge/charge profiles of Zn-MnO_x/PPy and Zn-MnO_x batteries at a 0.15 A g⁻¹. (d) Rate capability of Zn-MnO_x/PPy and Zn-MnO_x batteries. (f) Long-term cycling performance of Zn-MnO_x/PPy and Zn-MnO_x batteries at 6 A g⁻¹.

Fig. S5 shows that the MnO_x electrodes show poor capacity and rate performance when compared with MnO_x/PPy electrodes.

The reactions of the rechargeable aqueous Zn- MnO_x/PPy batteries can be formulated as below. [3-7]

MnO_x/PPy Cathode reactions: $H_20 \leftrightarrow H^+ + 0H^ MnO_x + 2xH^+ + (2x - 2)e^- \leftrightarrow Mn^{2+} + xH_20$ $3Zn^{2+} + 60H^- + ZnSO_4 + yH_20 \leftrightarrow ZnSO_4[Zn(0H)_2]_3 \cdot yH_20$ $PPy + Zn^{2+} \leftrightarrow PPy \cdot Zn^{2+}$

MnO_x/PPy Anode reaction: $Zn \leftrightarrow Zn^{2+} + 2e^{-}$

Reference:

[1] L. Du, S. Yu, X. Liu and Y. Ding, Appl. Surf. Sci., 2019, 486, 460-465.

[2] W. Tang, H. Liu, X. Wu and Y. Chen, Ozone-Sci. Eng., 2104, 36, 502-512.

[3] Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang and Y. Xia, *Angew. Chem.*, 2018, 130, 11911-11915.

[4] N. Palaniyandy, M. Kebede, K. Raju, K. Ozoemena, L. le Roux, M. Mathe and R. Jayaprakasam, *Mater. Chem. Phys.*, 2019, 230, 258-266.

[5] J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu and F. Kang, *Electrochim. Acta*, 2018, 259, 170-178.

[6] H. Pan, Y. Shao, P. Yan, Y. Cheng, K. Han and Z. Nie, Nat. Energy, 2016, 1, 16039.

[7] N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu and J. Chen, *Nat. Commun.*, 2017, 8, 405.