Supporting Information:

Direct Bilayer Growth: a New Growth Fundamental for Novel WSe₂

Homo-junction and Bilayer WSe₂ Growth

Long Fang¹, Xiaoming Yuan^{1*}, Kunwu Liu¹, Lin Li¹, Peng Zhou², Wei Ma³, Han

Huang¹, Jun He¹, Shaohua Tao^{1*}

¹Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China

²Hunan Provincial Key Defense Laboratory of High Temperature Wear-Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China

³Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China * Corresponding authors: <u>xiaoming.yuan@csu.edu.cn</u>; <u>eshtao@csu.edu.cn</u>

Figure S1 (a-b) AFM image of the WSe₂ homo-junction and the corresponding height profiles. (c) The FWHM intensity maps of WSe₂ Raman characteristic peak. The fitting range is 200-300cm⁻¹. (d) Raman peak position mapping of E_{2g}^{1} mode for the WSe₂ homo-junction sample.

Figure S2 More optical images of WSe₂ samples grown on sapphire substrates: (a) 880 $^{\circ}$ C, (b) 900 $^{\circ}$ C, (c) 940 $^{\circ}$ C and (d) 940 $^{\circ}$ C. (e) AFM image of the CVD-grown bilayer WSe₂ at 940 $^{\circ}$ C.

Figure S3 (a) Typical optical image of the CVD-grown WSe_2 samples at 880 °C. (b) PL spectra at the different regions of WSe_2 homo-junction.

Figure S4 (a) The side view model of the atomic structures for AA stacking WSe₂ homo-junction. (b) Band alignments of monolayer/bilayer WSe₂ homo-junction with respect to the vacuum level.¹ (c) Schematic diagram of the mechanism for emission energy shift induced by charge transfer from monolayer to bilayer WSe₂.²

Figure S5 More typical SEM images of WSe₂ homo-junction at different morphology.

Figure S6 (a) Typical SEM image of vertex region of WSe₂ homo-junction. (b) Schematic illustration of bottom layer atomic structure of WSe₂ homo-junction.

Figure S7 Typical optical image of the CVD-grown WSe_2 samples at 900°C. The growth time was 7 min and the WO₃ powder is 200mg.

References

- 1 C. Xia, W. Xiong, J. Du, T. Wang, Y. Peng, Z. Wei, J. Li and Y. Jia, *Small*, 2018, 14, 1800365.
- 2 Z. Jia, J. Shi, Q. Shang, W. Du, X. Shan, B. Ge, J. Li, X. Sui, Y. Zhong and Q. Wang, *ACS Appl. Mater. Interfaces*, 2019, **11**, 20566-20573.