1 ELECTRONIC SUPPLEMENTARY INFORMATION
2
3

4 Spin transition nanoparticles made electrochemically

5 Guillermo Pozo,^a Patricia de la Presa,^{b,c} Rafael Prato,^{a,d} Irene Morales,^{b,c} Pilar Marin,^{b,c} Jan 6 Fransaer,^d and Xochitl Dominguez-Benetton ^{a,e,*}

- ⁷ a. Separation and Conversion Technologies, VITO, Flemish Institute for Technological Research,
 ⁸ Boeretang 200, 2400, Mol, Belgium.
- 9 ^{b.} Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, Universidad Complutense de Madrid A6 22,500 Km, 28230 Las Rozas, Spain..
- 11 ^{c.} Dto. Física Materiales, UCM, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- ^{d.} Department of Materials Engineering, Surface and Interface Engineered Materials, Katholieke
 Universiteit Leuven, Kasteelpark Arenberg 44 box 2450, 3001 Leuven, Belgium.
- 14 e. SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium
- 15 * Corresponding author: xoch@vito.be
- 16
- 17
- 18

Figure ESI1. (a) Photograph of liquid samples taken at different pH using 9 mM of Cu²⁺ as
metal precursor (orange line) according to increasing charge density (0 to 3100 C L⁻¹). (b) Effect
of single Cu²⁺ concentration on charge density consumption using CuCl₂ as metal precursor.

46 **Figure ESI2.** Effect of mixed Cu^{2+} and Zn^{2+} concentration on charge consumption during the 47 synthesis of herberthsmithite. (a) High initial Cu^{2+} concentration; (b) Low initial Cu^{2+} 48 concentration.

69 Figure ESI3. Mean particle size and distribution of $Zn_xCu_{4-x}(OH)_6Cl_2$ products with a desired 70 value for x, a) x = 0 for clinoatacamite; b) x = 0.3 for paratacamite and c) x = 1 for 71 herbertsmithite.

	Charge consumed	ICP powder mg g ⁻¹ solid		(mmol)		Cu/Zn ratio	Phase percentage (%)			Cu and Zn in Cu _{4-x} Zn _x (OH) ₆ Cl ₂ Cu Zn		Stoichiometric coefficient	
Sample code	(C L ⁻¹)	Cu	Zn	Cu	Zn		Cu _{4-x} Zn _x (OH) ₆ Cl ₂	ZnO	Cu(OH)₂	CuO	(mM)	(mM)	(x)
Sample (a)	987	546		8.6			100	0	0	0	8.6		0
Sample (b)	1876	783		12.3						100	12.3		0
Sample (c1)	778	469	64	7.4	1.0	7.3	82	3.2	15	0	7.1	0.8	0.3
Sample (c2)	850	524	72	8.3	1.1	7.3	98	1.6	1.8	0	8.2	1.1	0.4
Sample (d1)	2000	462	150	7.3	2.3	3.1	77	15	8	0	6.2	2.1	1.0
Sample (d2)	2018	467	144	7.4	2.2	3.2	80	16	4	0	6.2	2.1	1.0

84	Table S1. Quantitati	ve phase analysis	(QPA) by	Rietveld method	and ICP-OES of	powder samples.
----	----------------------	-------------------	----------	-----------------	----------------	-----------------

96 Figure EIS5. (a) ZFC-FC thermal magnetization of a duplicates sample with stoichiometric coefficient (x = 1 and x = 0.3). (b) 97 Magnetization against field over temperature sweep at 2.0 K in duplicate samples.