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Scattered field from GNR in the focal plane 

As in the main paper, consider gold nanorods 

with their principal axes aligned with 𝑥𝑥𝑥𝑥𝑥𝑥, so 

that the polarizability tensor is diagonal with 

the principal values {𝛼𝛼1,𝛼𝛼2,𝛼𝛼2} [1]. It is 

convenient to resolve the amplitude of the 

incident electric field 𝐸𝐸0𝑖𝑖, which lies in the 𝑥𝑥𝑥𝑥-plane, into components parallel 𝐸𝐸0//𝑖𝑖 and 

perpendicular 𝐸𝐸0⊥𝑖𝑖 to the scattering plane, as shown in Fig. S1. The relationship between scattered 

and incident field can be expressed using the amplitude scattering matrix[1] 𝑆𝑆 as 

 �
𝐸𝐸//𝑠𝑠
𝐸𝐸⊥𝑠𝑠

� =
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

−𝑖𝑖𝑖𝑖𝑖𝑖
�𝑆𝑆2 𝑆𝑆3
𝑆𝑆4 𝑆𝑆1

� �
𝐸𝐸0//𝑖𝑖
𝐸𝐸0⊥𝑖𝑖

� , (S1) 

where the scattered field is uniformly divergent in the far field (𝑘𝑘𝑘𝑘 is large). If we assume that the 

particle is small compared to the wavelength of light, i.e. that the quasi-static approximation 

Fig. S1.: Schematic showing the definitions of 
quantities used in scattered field calculation. 
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applies, and recall that the particle is aligned with the coordinate system, the elements of the 

amplitude scattering matrix can be simplified to 

 

𝑆𝑆1 =
−𝑖𝑖𝑘𝑘3

4𝜋𝜋
(𝛼𝛼1sin2𝜉𝜉 + 𝛼𝛼2cos2𝜉𝜉)

𝑆𝑆2 =
−𝑖𝑖𝑘𝑘3

4𝜋𝜋
cos𝜁𝜁(𝛼𝛼1cos2𝜉𝜉 + 𝛼𝛼2sin2𝜉𝜉)

𝑆𝑆3 =
−𝑖𝑖𝑘𝑘3

4𝜋𝜋
cos𝜁𝜁(𝛼𝛼1 − 𝛼𝛼2) sin 𝜉𝜉 cos 𝜉𝜉

𝑆𝑆4 =
−𝑖𝑖𝑘𝑘3

4𝜋𝜋
(𝛼𝛼1 − 𝛼𝛼2) sin 𝜉𝜉 cos 𝜉𝜉

. (S2) 

with scattering polar angle 𝜉𝜉 and scattering azimuthal angle 𝜁𝜁 indicating the direction of the 

scattered light as defined in Fig. S1. 

Placing the particle at the focal plane of a lens, whose optical axis is aligned with the incident 

direction (𝑧𝑧), we can study the scattered field in the Fourier plane of the lens. For a focused incident 

beam polarized along 𝑥𝑥, its Fourier space field is also a plane with 𝑥𝑥 polarization. The parallel and 

perpendicular components of the incident field with polarization along  the 𝑥𝑥 axis can be expressed 

as �
𝐸𝐸0//𝑖𝑖
𝐸𝐸0⊥𝑖𝑖

� = �cos 𝜉𝜉
sin 𝜉𝜉 �𝐸𝐸0

𝑐𝑐, where 𝐸𝐸0𝑐𝑐 is the field amplitude at the beam center where the particle is 

located. If we approximate the incident light prior to the microscope objective as a plane wave 

with uniform field amplitude 𝐸𝐸0, the optical field amplitude distribution 𝐸𝐸𝑓𝑓 at the focal plane can 

be calculated using the Fraunhofer approximation as  

 𝐸𝐸𝑓𝑓�𝑟𝑟𝑓𝑓� = 𝑒𝑒𝑖𝑖𝑖𝑖𝑓𝑓𝐿𝐿𝑒𝑒𝑖𝑖
𝑘𝑘𝑟𝑟𝑓𝑓

2

2𝑓𝑓𝐿𝐿
𝑘𝑘𝐷𝐷2

𝑖𝑖8𝑓𝑓𝐿𝐿
𝐸𝐸0

2𝐽𝐽1�𝑘𝑘𝑘𝑘𝑟𝑟𝑓𝑓/2𝑓𝑓𝐿𝐿�
𝑘𝑘𝑘𝑘𝑟𝑟𝑓𝑓/2𝑓𝑓𝐿𝐿

, (S3) 

where 𝑟𝑟𝑓𝑓 denotes the distance from the axis within the focal plane, 𝑓𝑓𝐿𝐿 is the focal length of the 

microscope objective, 𝐷𝐷 is the circular aperture diameter of the focusing lens, and 𝐽𝐽1 is the Bessel 
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function of the first kind. Thus the relationship between 𝐸𝐸0𝑐𝑐 and 𝐸𝐸0 is 𝜂𝜂 = 𝐸𝐸0𝑐𝑐

𝐸𝐸0
= 𝑘𝑘𝐷𝐷2

8𝑓𝑓𝐿𝐿
2 = 1

2
�𝑁𝑁𝑁𝑁
𝑛𝑛
�
2
, 

where 𝑁𝑁𝑁𝑁 is the numerical aperture of the objective and 𝑛𝑛 is the refractive index of the medium 

surrounding the nanoparticle (water in our case).  

We then obtain: 

 �
𝐸𝐸𝑠𝑠𝑥𝑥

𝐸𝐸𝑠𝑠
𝑦𝑦� = �cos 𝜉𝜉 sin 𝜉𝜉

sin 𝜉𝜉 − cos 𝜉𝜉� �
𝐸𝐸//𝑠𝑠
𝐸𝐸⊥𝑠𝑠

�, (S4) 

and combining with Eq. (S1), the scattered field in the objective’s Fourier plane can be shown to 

equal  

 
𝐸𝐸𝑠𝑠𝑥𝑥 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟
𝑘𝑘2

4𝜋𝜋
𝐸𝐸0𝑐𝑐𝛼𝛼1(sin2𝜉𝜉 + cos2𝜉𝜉 cos 𝜁𝜁)

𝐸𝐸𝑠𝑠
𝑦𝑦 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟
𝑘𝑘2

4𝜋𝜋
𝐸𝐸0𝑐𝑐𝛼𝛼1 sin 𝜉𝜉 cos 𝜉𝜉 (cos 𝜁𝜁 − 1)

. (S5) 

It can be seen from this expression that the majority of the power is in the 𝑥𝑥 component. The 𝑦𝑦 

component is small, particularly for small 𝜁𝜁. Regardless, due to the 𝑦𝑦 component being anti-

symmetric about the 𝑥𝑥 and 𝑦𝑦 axes with respect to 𝜉𝜉, the 𝑦𝑦 component will not be coupled into the 

rotationally symmetric fundamental mode of the single mode fiber, and thus can be ignored. The 

scattered field for an anisotropic nanoparticle on the focal plane reduces to 

 𝐸𝐸𝑠𝑠 =
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘
𝜅𝜅𝐸𝐸0𝛼𝛼1, (S6) 

where the coupling efficiency 𝜅𝜅 is given by 

 
𝜅𝜅 ≈

𝑘𝑘3

4𝜋𝜋
𝜂𝜂
𝐴𝐴
� � 𝑓𝑓(𝜉𝜉, 𝜁𝜁) 𝑟𝑟2 sin 𝜉𝜉 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜋𝜋/2

0

𝜁𝜁𝑁𝑁𝑁𝑁

0
 

𝐴𝐴 = 2𝜋𝜋𝑟𝑟2(1 − cos 𝜉𝜉𝑁𝑁𝑁𝑁) 

(S7) 
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as in the main paper, where 𝑓𝑓(𝜉𝜉, 𝜁𝜁) = 𝛽𝛽(sin2𝜉𝜉 + cos2𝜉𝜉 cos 𝜁𝜁). 𝛽𝛽 is a coefficient that accounts for 

the detection efficiency of the optical system. 

The beam measured in the far field or at the detector is a combination of the reflected field from 

the substrate and the scattered field from the particle. Under the far field approximation, the 

incident field can be expressed in spherical wave form as  𝐸𝐸inc = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘
𝐸𝐸0𝑒𝑒−𝑖𝑖𝑖𝑖/2, where 𝑟𝑟 is the 

distance and the 𝜋𝜋/2 phase term comes from the Gouy phase shift [2].  

Taking only first order of reflection and scattering into consideration, the total combined field 

under the first-order Born approximation is 

 𝐸𝐸ret = 𝑅𝑅𝐸𝐸inc + 2𝑅𝑅𝐸𝐸𝐹𝐹 − 𝐸𝐸𝐵𝐵, (S8) 

where 𝐸𝐸𝐹𝐹 and 𝐸𝐸𝐵𝐵 are respectively the forward- and back-scattered fields. In the quasi-static 

approximation, which is reasonable for a typical gold nanorod, 𝐸𝐸𝐹𝐹 and 𝐸𝐸𝐵𝐵 are essentially the same. 

With the amplitude reflectivity 𝑅𝑅 ≪ 1, the combined reflected field can be taken to be 

 
𝐸𝐸ret ≈ 𝑅𝑅𝐸𝐸inc − 𝐸𝐸𝐵𝐵

= −
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘
𝑖𝑖𝐸𝐸0𝑅𝑅 �1 − 𝑖𝑖

𝜅𝜅
𝑅𝑅
𝛼𝛼1� ∝ 1 − 𝑖𝑖

𝜅𝜅
𝑅𝑅
𝛼𝛼1,

 (S9) 

which is also Eq. (2) in the paper. 

Quantitative Optical Anisotropy Microscopy 

We employ Jones calculus to analyze the optical system. Leaving out the effect of the polarizer, 

the field after a double-pass transmission through the entire system can be obtained by 

 𝕋𝕋 = 𝐑𝐑−𝜓𝜓𝐓𝐓𝑐𝑐𝐑𝐑−φ𝐓𝐓𝑠𝑠𝐑𝐑φ𝐓𝐓𝑐𝑐𝐑𝐑𝜓𝜓 (S10) 
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where 𝐑𝐑𝜑𝜑 is a rotation matrix for angle 𝜑𝜑 around the optical axis, 𝐓𝐓c  and 𝐓𝐓s are the Jones matrices 

for respectively the crystal and the probed GNR, and 𝜓𝜓 and 𝜑𝜑 are the azimuthal angles of the 

polarizer and the GNR with respect to the slow axis of the birefringent crystal. Each of the 

constituent matrices can be written in terms of the identity matrix and the SU(2) generating 

matrices:  

 𝐮𝐮𝟎𝟎 = �1 0
0 1� ,𝐮𝐮𝟏𝟏 = �0 𝑖𝑖

𝑖𝑖 0� ,𝐮𝐮𝟐𝟐 = �0 −1
1 0 � ,𝐮𝐮𝟑𝟑 = �𝑖𝑖 0

0 −𝑖𝑖� (S11) 

as: 

 

𝐑𝐑𝜑𝜑 = � cos𝜑𝜑 sin𝜑𝜑 
− sin𝜑𝜑 cos𝜑𝜑� = cos𝜑𝜑 ⋅ 𝐮𝐮𝟎𝟎 − sin𝜑𝜑 ⋅ 𝐮𝐮𝟐𝟐, 

𝐓𝐓𝑐𝑐 = �𝑒𝑒
𝑖𝑖𝑖𝑖𝐿𝐿𝑐𝑐
2 0

0 𝑒𝑒−
𝑖𝑖𝑖𝑖𝐿𝐿𝑐𝑐
2
� = cos

𝑘𝑘𝐿𝐿𝑐𝑐
2
𝐮𝐮𝟎𝟎 + sin

𝑘𝑘𝐿𝐿𝑐𝑐
2
𝐮𝐮𝟑𝟑, 

𝐓𝐓𝑠𝑠 = �𝑐𝑐 0
0 𝑐𝑐′� = 𝑎𝑎𝐮𝐮𝟎𝟎 + 𝑏𝑏𝐮𝐮𝟑𝟑, 

(S12) 

where 𝑘𝑘 is the wavenumber, 𝐿𝐿𝑐𝑐 is the total birefringence of the crystal, and 𝑎𝑎 = 𝑐𝑐+𝑐𝑐′

2
 and 𝑏𝑏 = 𝑐𝑐−𝑐𝑐′

2𝑖𝑖
. 

This notation is useful partly because it simplifies the calculation of 𝕋𝕋 somewhat, partly because 

{𝒖𝒖𝑖𝑖} obey the same algebra as quaternions, which makes it straightforward to implement 

calculation in software packages that implement quaternions, such as MATLAB and Mathematica. 

With a bit of work, we then get 

𝕋𝕋 = (𝑎𝑎 cos 𝑘𝑘𝐿𝐿𝑐𝑐 − 𝑏𝑏 sin 𝑘𝑘𝐿𝐿𝑐𝑐 cos 2𝜑𝜑) ⋅ 𝐮𝐮𝟎𝟎 
        + �𝑎𝑎 sin𝑘𝑘𝐿𝐿𝑐𝑐 sin 2𝛽𝛽 + 𝑏𝑏(cos 𝑘𝑘𝐿𝐿𝑐𝑐 sin 2𝛽𝛽 cos 2𝜑𝜑 + cos 2𝛽𝛽 sin 2𝜑𝜑)� ⋅ 𝐮𝐮𝟏𝟏 

                        + �𝑎𝑎 sin𝑘𝑘𝐿𝐿𝑐𝑐 cos 2𝛽𝛽 + 𝑏𝑏(cos 𝑘𝑘𝐿𝐿𝑐𝑐 cos 2𝛽𝛽 cos 2𝜑𝜑 − sin 2𝛽𝛽 sin 2𝜑𝜑)� ⋅ 𝐮𝐮𝟑𝟑 
(S13) 



 6 

The expression for 𝐓𝐓𝑠𝑠 is sufficiently general to encode the effect of scattering from any non-

chiral particle, since the azimuthal orientation of the particle is already accounted for through the 

𝐑𝐑𝜑𝜑 matrices in Eq. (S10). For the case of small nanoparticles like our GNRs, Eqs. (S9) and (2) 

give us that 

 �
𝑐𝑐 = 1 −

𝑖𝑖𝑖𝑖
𝑅𝑅
𝛼𝛼1

𝑐𝑐′ = 1 −
𝑖𝑖𝑖𝑖
𝑅𝑅
𝛼𝛼2

⟹ �
𝑎𝑎 = 1 −

𝑖𝑖𝑖𝑖
𝑅𝑅
𝛼𝛼1 + 𝛼𝛼2

2
= 1 −

𝑖𝑖𝑖𝑖
2𝑅𝑅

𝛼𝛼+

𝑏𝑏 =
𝜅𝜅

2𝑅𝑅
(𝛼𝛼2 − 𝛼𝛼1) =  −

𝜅𝜅
2𝑅𝑅

𝛼𝛼−     
. (S14) 

If we take 𝐸𝐸ref to be the magnitude of the electric field that reaches the detector with the sample 

and birefringent crystal removed (but leaving the reflecting substrate), we get that the detected 

field with sample and all components in place is 

 𝑬𝑬out(𝑘𝑘) = �1
0�

𝑇𝑇
𝕋𝕋 �𝐸𝐸ref(𝑘𝑘)

0
�. (S15) 

In other words, the effect of the polarizer is to ensure that only light described by 𝕋𝕋11 reaches the 

spectrometer. By squaring Eq. (S15), we can write the detected intensity spectrum in terms of 𝕋𝕋, 

and also as a sum of terms proportional to multiples of the modulation 𝑒𝑒𝑖𝑖𝑖𝑖𝐿𝐿𝑐𝑐  due to the birefringent 

crystal: 𝐼𝐼out(𝑘𝑘) = 𝐼𝐼ref(𝑘𝑘)|𝕋𝕋11|2, where 

 

|𝕋𝕋11|2= �
|𝑎𝑎|2 �1 − 1

2 sin2 2𝜓𝜓� +                                    

|𝑏𝑏|2 ��1 − 3
2 sin2 2𝜓𝜓� cos2 2𝜑𝜑 + sin2 2𝜓𝜓�

�

+
1
4

sin 4𝜓𝜓 �
2𝑖𝑖 ℜe{𝑎𝑎𝑏𝑏∗} sin 2𝜑𝜑
−|𝑏𝑏|2 sin 4𝜑𝜑 � 𝑒𝑒𝑖𝑖𝑖𝑖𝐿𝐿𝑐𝑐 

+
1
4

sin2 2𝜓𝜓 �
2𝑖𝑖 ℜe{𝑎𝑎𝑏𝑏∗} cos 2𝜑𝜑 +
|𝑎𝑎|2 − |𝑏𝑏|2 cos2 2𝜑𝜑 � 𝑒𝑒2𝑖𝑖𝑖𝑖𝐿𝐿𝑐𝑐 + 𝑐𝑐. 𝑐𝑐.

 (S16) 
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Two carrier frequencies (1𝑓𝑓 and 2𝑓𝑓) are thus created in the detected spectrum, corresponding to 

the single- and double-pass retardation of the crystal (𝑘𝑘𝐿𝐿𝑐𝑐 and 2𝑘𝑘𝐿𝐿𝑐𝑐). From Eq. (S14) we have 

that: 

 

|𝑎𝑎|2 = 1 +
𝜅𝜅
𝑅𝑅
𝛼𝛼𝐼𝐼+ +

1
4
�
𝜅𝜅𝛼𝛼+

𝑅𝑅
�
2

,      |𝑏𝑏|2 =
1
4
�
𝜅𝜅𝛼𝛼−

𝑅𝑅
�
2

,       

𝔑𝔑e{𝑎𝑎𝑏𝑏∗} =
𝜅𝜅

2𝑅𝑅
𝛼𝛼𝑅𝑅− +

1
4
𝜅𝜅2

𝑅𝑅2
(𝛼𝛼𝑅𝑅−𝛼𝛼𝐼𝐼+ − 𝛼𝛼𝐼𝐼−𝛼𝛼𝑅𝑅+). 

(S17) 

We will treat this in two limits, at least one of which is likely to be valid for a majority of cases. 

To simplify the expressions, we choose to take 𝜓𝜓 = 𝜓𝜓0 = 27.37° so that 1 − 3
2 sin2 2𝜓𝜓0 = 0, 

which is close to the angle used in the actual experiments. Different choices of 𝜓𝜓 are certainly 

possible, but will not change the conclusion of what follows. First, if we are in the weak scattering 

limit 𝛼𝛼𝛼𝛼
𝑅𝑅
≪ 1, the expression becomes: 

  |𝕋𝕋11|2 ≈ 2
3

+ 1
2√3

�
𝑖𝑖 𝜅𝜅
𝑅𝑅
𝛼𝛼𝑅𝑅− sin 2𝜑𝜑 −

− 1
4
�𝜅𝜅𝛼𝛼

−

𝑅𝑅
�
2

sin 4𝜑𝜑
� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 1

6
�𝑖𝑖

𝜅𝜅
𝑅𝑅
𝛼𝛼𝑅𝑅− cos 2𝜑𝜑 +

1
� 𝑒𝑒2𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐. 𝑐𝑐., (S18) 

where we are keeping only the leading order of 𝛼𝛼 in each term, as it will be dominant in this limit. 

Eq. (S18) is then the expression to use for the smallest particles, where only the interferometric 

and constant terms remain in the expression. In the experiment described in the main paper, we 

are not quite in this limit, both because the GNRs are relatively strongly scattering near resonance, 

and because for a glass interface in water 𝑅𝑅 ≈ 0.06, so that 𝛼𝛼 𝜅𝜅⁄  is actually quite large. Instead, 

we can use the fact that GNRs are strongly anisotropic, with 𝛼𝛼2 ≪ 𝛼𝛼1 ⇒ 𝛼𝛼+ ≈ 𝛼𝛼− = 𝛼𝛼1. This 

yields: 
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|𝕋𝕋11|2 ≈
2
3
�
1 +

𝜅𝜅𝛼𝛼𝐼𝐼
𝑅𝑅

+

5
12

�
𝜅𝜅𝜅𝜅
𝑅𝑅
�
2 � +

1
2√3

�
𝑖𝑖
𝜅𝜅
𝑅𝑅
𝛼𝛼𝑅𝑅 sin 2𝜑𝜑 −

−
1
4
�
𝜅𝜅𝜅𝜅
𝑅𝑅
�
2

sin 4𝜑𝜑
� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 +

1
6
�

𝑖𝑖
𝜅𝜅
𝑅𝑅
𝛼𝛼𝑅𝑅 cos 2𝜑𝜑 +

1 +
𝜅𝜅𝛼𝛼𝐼𝐼
𝑅𝑅

+
1
4
�
𝜅𝜅𝜅𝜅
𝑅𝑅
�
2

sin2 2𝜑𝜑
� 𝑒𝑒2𝑖𝑖𝑖𝑖𝑖𝑖 

         + 𝑐𝑐. 𝑐𝑐. (S19) 

Generalizing to the case of arbitrary 𝜓𝜓, the second and third term in this expression lead to Eq. (6) 

in the main paper. In this limit, terms proportional to 𝛼𝛼2 are not negligible, which means that we 

are able to measure the total scattered light intensity, most conveniently from the real part of the 

1𝑓𝑓 term in Eq. (S19). Note however that in the high anisotropy limit, as in the weak scattering 

limit, the signal is linear in 𝛼𝛼 (or 𝛼𝛼−), which is a convenient feature that makes QOAI signals 

straightforward and convenient to analyze. 

Scattering from tilted nanorods 

For an arbitrary orientation, the polarization tensor of a nanorod is given by 

 𝛂𝛂 = 𝐀𝐀(𝜃𝜃,𝜑𝜑)𝑇𝑇 �
𝛼𝛼1 0 0
0 𝛼𝛼2 0
0 0 𝛼𝛼2

�𝐀𝐀(𝜃𝜃,𝜑𝜑), (S20) 

assuming a nanoparticle with its polarizability 𝛼𝛼1, 𝛼𝛼2 along its principal axes. 𝐀𝐀(𝜃𝜃,𝜑𝜑) is the three-

dimensional rotation matrix, and 𝜃𝜃,𝜑𝜑 are the polar and azimuthal angles of the rod. In the 

calculation of 𝕋𝕋 in Eq. (S10), it is the top left 2×2 submatrix of the polarization tensor 𝛂𝛂 that enters 

as: 

 𝐑𝐑−𝜑𝜑𝐓𝐓𝑠𝑠𝐑𝐑𝜑𝜑 = 𝕀𝕀 −
𝑖𝑖𝑖𝑖
𝑅𝑅
𝛂𝛂[1,2;1,2]. (S21) 

Since the azimuthal angle 𝜑𝜑 is already accounted for in Eq. (S10), it therefore suffices to note that 

𝐀𝐀(𝜃𝜃,𝜑𝜑) = 𝐑𝐑y(𝜃𝜃 − 𝜋𝜋/2)𝐑𝐑z(𝜑𝜑) and that 
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𝐑𝐑y �−𝜃𝜃 +
𝜋𝜋
2
��

𝛼𝛼1 0 0
0 𝛼𝛼2 0
0 0 𝛼𝛼2

�𝐑𝐑y �𝜃𝜃 −
𝜋𝜋
2
�

= �
𝛼𝛼1 sin2 𝜃𝜃 + 𝛼𝛼2 cos2 𝜃𝜃 0 (𝛼𝛼1 − 𝛼𝛼2) sin𝜃𝜃 cos 𝜃𝜃

0 𝛼𝛼2 0
(𝛼𝛼1 − 𝛼𝛼2) sin 𝜃𝜃 cos 𝜃𝜃 0 𝛼𝛼2 sin2 𝜃𝜃 + 𝛼𝛼1 cos2 𝜃𝜃

� .

 (S22) 

Accordingly, and provided that we are in the high anisotropy limit 𝛼𝛼1 ≫ 𝛼𝛼2, the effect of tilting 

the scattering particle is to make the replacement 𝛼𝛼1 → 𝛼𝛼1 sin2 𝜃𝜃 in Eq. (S14).  

Rotational Autocorrelation Functions 

For any measured signal 𝑋𝑋 that is a function of a stochastic process 𝑞𝑞(𝑡𝑡), the autocorrelation 

function of 𝑋𝑋 is: 

 𝐶𝐶𝑋𝑋(𝑡𝑡) =  〈𝑋𝑋[𝑞𝑞(𝑡𝑡)]𝑋𝑋[𝑞𝑞(0)]〉 =  �𝑑𝑑𝑞𝑞0 �𝑑𝑑𝑑𝑑 𝑋𝑋[𝑞𝑞0]∗𝑋𝑋[𝑞𝑞] 𝑝𝑝(𝑞𝑞0)𝑝𝑝(𝑞𝑞, 𝑡𝑡|𝑞𝑞0), (S23) 

where 𝑝𝑝(𝑞𝑞0) is the unconditional probability density of 𝑞𝑞 = 𝑞𝑞0 and 𝑝𝑝(𝑞𝑞, 𝑡𝑡|𝑞𝑞0) is the conditional 

probability of finding 𝑞𝑞 at time 𝑡𝑡 given 𝑞𝑞0 at time 𝑡𝑡 = 0 . In our case, 𝑞𝑞 will be either the gold 

nanorod orientation Ω = (𝜃𝜃,𝜙𝜙), or its position 𝐫𝐫 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧). The signals we are measuring are 

either 𝑑𝑑 = 𝑑𝑑0�𝒓𝒓(𝑡𝑡)� ⋅ sin2 𝜃𝜃(𝑡𝑡) or sin 2𝜑𝜑 (we could also equivalently choose cos 2𝜑𝜑). 

Following Hinze et al. [3] we have that for the case of our cylindrically symmetric nanorods: 

 

𝑝𝑝(Ω0) =
1

4𝜋𝜋
, 

𝑝𝑝(Ω, 𝑡𝑡|,Ω0) = �𝑌𝑌𝑙𝑙𝑚𝑚(Ω0)∗ 𝑌𝑌𝑙𝑙𝑚𝑚(Ω)
𝑙𝑙,𝑚𝑚

𝑒𝑒−𝑙𝑙(𝑙𝑙+1)𝐷𝐷𝑅𝑅𝑡𝑡. 

(S24) 

𝑌𝑌𝑙𝑙𝑚𝑚(Ω)  are the spherical harmonics and 𝐷𝐷𝑅𝑅 is the rotational diffusivity of the nanorod for rotation 

around axes perpendicular to the rod. From this, we obtain that 
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 𝐶𝐶𝑋𝑋(𝑡𝑡) = �𝐴𝐴𝑙𝑙𝑒𝑒−𝑙𝑙(𝑙𝑙+1)𝐷𝐷𝑅𝑅𝑡𝑡

𝑙𝑙

, (S25) 

with 

 𝐴𝐴𝑙𝑙 =
1

4𝜋𝜋
��� 𝑑𝑑𝑑𝑑

2𝜋𝜋

0

� sin𝜃𝜃 𝑑𝑑𝑑𝑑 𝑋𝑋(𝜃𝜃,𝜙𝜙)𝑌𝑌𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙)
𝜋𝜋

0

�
𝑚𝑚

2

.  (S26) 

For 𝑋𝑋 = sin2 𝜃𝜃, we obtain: 

 𝐴𝐴𝑙𝑙
�sin2 𝜃𝜃� = 𝜋𝜋 �� sin3 𝜃𝜃 𝑌𝑌𝑙𝑙0(𝜃𝜃, 0) 𝑑𝑑𝑑𝑑

𝜋𝜋

0

�

2

, (S27) 

while for 𝑋𝑋 = sin 2𝜑𝜑 (or cos 2𝜑𝜑), the coefficients are: 

 𝐴𝐴𝑙𝑙
(sin2𝜑𝜑) = 𝐴𝐴𝑙𝑙

(cos2𝜑𝜑) =  
𝜋𝜋
2
�� sin𝜃𝜃 𝑌𝑌𝑙𝑙2(𝜃𝜃, 0) 𝑑𝑑𝑑𝑑
𝜋𝜋

0

�

2

. (S28) 

Due to the symmetry of the spherical harmonics, many of the 𝐴𝐴𝑙𝑙 coefficients are zero. For the 

〈𝑑𝑑〉 signal (𝑋𝑋 = sin2 𝜃𝜃), only 𝐴𝐴0 and 𝐴𝐴2 are non-zero, and we have: 

 𝐶𝐶sin2 𝜃𝜃(𝑡𝑡) =
4
9

+
8

15
𝑒𝑒−6𝐷𝐷𝑅𝑅𝑡𝑡. (S29) 

For the orientation measurement (𝑋𝑋 = cos 2𝜑𝜑 , sin 2𝜑𝜑), 𝐴𝐴0 = 0 (since we use the range 𝜑𝜑 ∈

(−𝜋𝜋,𝜋𝜋]  ⇒ 〈cos 2𝜑𝜑〉 ≡ 0), while all other even terms are non-zero. However, the 𝑙𝑙 = 2 term 

dominates the sum, so 𝐶𝐶𝐹𝐹(𝑡𝑡) ≈ 𝐶𝐶𝐹𝐹(0)𝑒𝑒−6𝐷𝐷𝑅𝑅𝑡𝑡 is a good approximation, although a better fit can 

still be obtained by fitting to a stretched exponential [3]. Therefore: 
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 𝐶𝐶sin2𝜑𝜑(𝑡𝑡) ≈ 𝐶𝐶sin2𝜑𝜑(0)𝑒𝑒−�
6𝐷𝐷𝑅𝑅𝑡𝑡
𝛼𝛼 �

𝛽𝛽

. (S30) 

A nonlinear fit to the series in Eq. (S25) with a cutoff at 𝑙𝑙 = 22 yields 𝛼𝛼 = 0.8285 and 𝛽𝛽 =

0.8677. 

Estimating the sensitivity of 𝝋𝝋 measurements 

In our 2015 Optics Letter paper [4], we showed that sub-degree angular sensitivity in 𝜑𝜑 can be 

achieved in birefringence measurements using our methods. In fact, for sufficiently large phase 

retardation, the sensitivity can be as high as ~0.01 degrees. To verify that a similar result holds 

here we cannot rely directly on the plot in Fig. 5(a), since it depends on 𝜑𝜑SEM, which is subject to 

errors that are likely larger than those in 𝜑𝜑QOAI. For instance, the image processing algorithm that 

produces 𝜑𝜑SEM from SEM micrographs is of limited precision. There are also systematic errors 

associated with this measurement due to things like residual astigmatism in the electron optics and 

rotational misalignment between optical and electron images. It is also likely that there are 

systematic errors in 𝜑𝜑QOAI that do not directly affect the sensitivity of our measurement, for 

instance due to reflection off the surfaces of 

the birefringent crystal. 

We estimate the sensitivity in 𝜑𝜑QOAI for 

each image used in composing Fig. 5(a) by 

calculating the  standard deviations 𝜎𝜎𝜑𝜑 of 𝜑𝜑 

obtained from spectra across each of the spots 

in the QOAI images underlying the data in 

Fig. 5. For this calculation we use spectra in 

Fig. S2.: Plots of 𝜑𝜑 from a single Type II GNR, 
calculated using (a) the magnitudes of 𝐴𝐴(𝑘𝑘) 
and 𝐵𝐵(𝑘𝑘), and (b) the slopes of  𝐴𝐴(𝑘𝑘) and 𝐵𝐵(𝑘𝑘). 
The white dashed boxes delineate the data 
points used to calculate the 𝜎𝜎𝜑𝜑 values plotted in 
Figs. 5 and S3. 
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a 7×7 array centered on the geometric center of 

each beam spot (see Fig. S2), and that is fully 

contained within the FWHM of the spot. This 

involves using data that was taken with a 

slightly misaligned GNR, and therefore is 

somewhat suboptimal. The resulting standard 

deviations are therefore an upper bound on the 

true sensitivity. 

This exercise clearly shows why it is 

important to use Eq. 10 calculate 𝜑𝜑 for Type II 

particles. Fig S3 plots the residual 𝜑𝜑QOAI −

𝜑𝜑SEM and the standard deviation 𝜎𝜎𝜑𝜑 as in Fig. 

5(b), but where we have used Eq. 9 to calculate all values of 𝜑𝜑. With few exceptions, 𝜎𝜎𝜑𝜑 in the 

Type II particles (blue error bars) is significantly larger in this calculation than in Fig. 5(b). The 

systematic errors are also bigger in many cases. Fig. S2 illustrates the difference in a different way, 

by plotting 𝜑𝜑 for all the spectra collected from a single Type II rod, calculated with respectively 

Eq. 9 and Eq. 10. The difference is obvious, and we conclude that Eq. 10 is generally superior for 

finding 𝜑𝜑 in Type II GNRs.  
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Fig. S3.: Plot of the residual 𝜑𝜑SEM − 𝜑𝜑QOAI 
vs  𝜑𝜑SEM. The error bars indicate the standard 
deviation in 𝜑𝜑QOAI. Blue error bars are for 
Type II particles, while red error bars 
indicate Type I and III particles. 
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