Supporting Information

Bifunctional nanoporous Ni-Co-Se electrocatalyst with superaerophobic surface for the water and hydrazine oxidation

Zhongbao Feng^{a,b*}, Enping Wang^a, Shuai Huang^a, Jiming Liu^a

^aSchool of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, PR China

^bState key laboratory of rolling and automation, Northeastern University, Shenyang, 110819, P. R.

China.

^{*} Corresponding author. E-mail addresses: fengzb@smm.neu.edu.cn (Z. Feng)

Fig. S1 SEM images of a) CoSe₂ and b) NiSe₂

Fig. S2 XRD patterns of a) CoSe₂ and b) NiSe₂

Fig. S3 CV curves of a) NF, b) $CoSe_2$, c) $NiSe_2$ and d) $Ni_{0.6}Co_{0.4}Se$ in the capacitance

current range at various scan rates.

Fig. S4 a) CV plots and b) LSV plots of $CoSe_2$, $NiSe_2$ and $Ni_{0.6}Co_{0.4}Se$ after averaged by ECSA

Fig. S5 Multi-current process of Ni_{0.6}Co_{0.4}Se in 1.0 M KOH electrolyte.

Fig. S6 a) SEM image of used Ni_{0.6}Co_{0.4}Se after OER cycles in 1.0 M KOH at 10 mA cm⁻² for 24 h, b) capacitive current densities of fresh and used Ni_{0.6}Co_{0.4}Se after OER cycles as a function of scan rate ($\Delta j = |j_a - j_c|/2$).

Fig. S7 Amount of experimental and theoretical O_2 evolution by $Ni_{0.6}Co_{0.4}Se$ at a

constant oxidation current density of 1 mA.

Fig. S8 Comparison of cell voltages from LSV plots of overall and hybrid water electrolysis for $Ni_{0.6}Co_{0.4}Se$ couple in two-electrode cell at a scan rate of 5 mV s⁻¹

Fig. S9 a) SEM images of used Ni_{0.6}Co_{0.4}Se after HzOR cycle in 1.0 M KOH with 3.0 M N₂H₄·H₂O at 200 mA cm⁻² for 20000 s, b) capacitive current densities of fresh and used Ni_{0.6}Co_{0.4}Se after HzOR cycles as a function of scan rate ($\Delta j = |j_a - j_c|/2$).

Fig. S10 a) Adhesive force measurements of the gas bubbles on NF, $CoSe_2$ and $NiSe_2$

surface

Catalysts	Current density Overpotential		Tafel slope	
	$(mA cm^{-2})$	(mV)	$(mV dec^{-1})$	KeI.
(Ni,Co)Se ₂ /CC	10	256	74	[S1]
CoSe ₂ /CC	10	297	41	[S2]
(Ni,Co) _{0.85} Se/NF	20	287	87	[S3]
EG/Co _{0.85} Se/NiFe-LDH	10	250	57	[S4]
NiCoSe ₂ /NF	10	274	61	[S5]
Co(S _{0.22} Se _{0.78}) ₂ /CF	10	270	65.6	[S6]
Ni ₅ P ₄ /Ni foil	10	290	40	[S7]
Co_3O_4 (a) MoS_2	10	269	58.9	[S8]
Ni _{0.6} Co _{0.4} Se/NF	10	240	53	This
	10	247	53	work

Table S1. Comparision of OER performance of $Ni_{0.6}Co_{0.4}Se$ with other non-noblemetal-based electrocatalysts.

samples	electrolyte	j (mA	E (V vs.	Onset	Ref.
		cm ⁻²)	RHE)	Potential (V)	
NiCoSe ₂ /NF	0.5 M KOH, 0.1 M	40	0.6	0.15	[89]
	N_2H_4 · H_2O				
Ni ₃ Se ₄ /NF	1.0 M KOH, 0.5 M	75	0.4	0.15	[S10]
	N_2H_4 · H_2O				
CoSe ₂	1.0 M KOH, 0.1 M	120	0.4	0.025	[S11]
	N_2H_4 · H_2O				
NiS/NF	1.0 M KOH, 0.02	125	0.4	0.1	[S12]
	$M N_2 H_4 {\cdot} H_2 O$				
NiFeP/NM	1.0 M KOH, 0.5 M	200	0.3	0.00	[S13]
	N_2H_4 · H_2O				
Ni _{0.6} Co _{0.4} Se/NF	1.0 M KOH, 0.1 M	300	0.4	0.025	This
	N_2H_4 · H_2O	500			work

Table S2. Comparision of HzOR performance of $Ni_{0.6}Co_{0.4}Se$ with other non-noble metal-based electrocatalysts.

References

- S1 W. Song, X. Teng, Y. Liu, J. Wang, Y. Niu, X. He and Z. Chen, *Nanoscale*, 2019, 11, 6401-6409.
- S2 C. Sun, Q. Dong, J. Yang, Z. Dai, J. Lin, P. Chen and X. Dong, *Nano Res.*, 2016, 9, 2234-2243.
- S3 K. Xiao, L. Zhou, M. Shao and M. Wei, J. Mater. Chem. A, 2018, 6, 7585-7591.

- S4 Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, *Energ. Environ.* Sci., 2016, 9, 478-483.
- S5 H. Zhu, R. Jiang, X. Chen, Y. Chen, and L. Wang, *Sci. Bull.*, 2017, 62, 1373-1379.
- S6 L. Fang, W. Li, Y. Guan, Y. Feng, H. Zhang, S. Wang and Y. Wang, Adv. Funct. Mater., 2017, 27, 1701008.
- S7 M. Ledendecker, S. Krick Calderón, C. Papp, H. P. Steinrück, M. Antonietti and M. Shalom, *Angew. Chem. Int. Edit.*, 2015, 54, 12361-12365.
- S8 J. Liu, J. Wang, B. Zhang, Y. Ruan, H. Wan, X. Ji and J. Jiang, J. Mater. Chem. A, 2018, 6, 2067-2072.
- S9 K. Akbar, J. H. Jeon, M. Kim, J. Jeong, Y. Yi and S. H. Chun, ACS Sustain. Chem. Eng., 2018, 6, 7735-7742.
- S10 J. Y. Zhang, X. Tian, T. He, S. Zaman, M. Miao, Y. Yan and B. Y. Xia, J. Mater. Chem. A, 2018, 6, 15653-15658.
- S11 B. Y. Xia, J. Y. Zhang, H. Wang, Y. Tian, Y. Yan, Q. Xue and Y. Chen, Angew. Chem. Int. Ed., 2018, 130, 7775-7779.
- S12 G. Liu, Z. Sun, X. Zhang, H. Wang, G. Wang, X. Wu and H. Zhao, J. Mater. Chem. A, 2018, 6, 19201-19209.
- S13 Q. Sun, M. Zhou, Y. Shen, L. Wang, Y. Ma, Y. Li and C. Zhao, *J. Catal.*, 2019, 373, 180-189.