Encapsulation of MnFe₂O₄ Nanoparticles into Carbon Framework

with Superior Rate Capability for Lithium Ion Battery

Weiqin Li,^a Cuihua An,^b Huinan Guo,^a Yan Zhang,^a Kai Chen,^a Zeting Zhang,^a Guishu Liu,^a Yafei Liu,^a and Yijing Wang^{*a}

^aKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China

^bTianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384 P. R. China

*Corresponding author: Prof. Yijing Wang, E-mail: wangyj@nankai.edu.cn

Figure S1. (a, b) SEM images and (c) TEM image of MnFe-NTA precursor.

Figure S2. FT-IR spectra of NTA and MnFe-NTA precursor.

Figure S3. TG-DTA curves of MnFe-NTA precursor.

Figure S4. (a) XPS survey spectrum, the high resolution spectra of O 1s (b) and C 1s (c) for $MnFe_2O_4@C$.

Figure S5. (a) N_2 adsorption-desorption isotherm and (b) pore diameter distribution curve of MnFe₂O₄@C.

Figure S6. Comparison of rate capabilities between $MnFe_2O_4@C$ and reported previously $MnFe_2O_4$ electrode for LIBs.

Figure S7. (a, b) SEM images of $MnFe_2O_4@C$ electrode after 100 cycles at the current density of 1000 mA g⁻¹.

Figure S8. (a) EIS spectra with different cycles at the current density of 1000 mA g⁻¹ and (b) the plots of impedance as a function of the inverse square root of angular frequency in the Warburg region for $MnFe_2O_4@C$.