Nanoscale *in-silico* classification of ligand functionalised surfaces for protein adsorption resistance

Matthew Penna[†][‡] and Irene Yarovsky[†]^{‡*}

† School of Engineering, RMIT University, Melbourne, VIC, Australia, 3000

‡ ARC Research Hub for Australian Steel Manufacturing, Wollongong, NSW, 2522

Supplementary Figures

Fig. S1: Average RMSFs of heavy atoms along the ligand chain (from left to right C₁, C₂, C₃, O, C₄, C₅, C_T) against the height above the substrate for (a) GPS, (b) CF₃, (c) GPS:sNH₂, and (d) GPS:sCF₃ systems.

Fig. S2: Relative density maps for 2 equilibrated water droplets on the (a) GPS, (b) CF₃, (c) GPS:sNH₂, and (d) GPS:sCF₃ systems in-vacuum with colorbar showing relative atomic density compared to bulk TIP3P water and contact angle estimates shown.

Fig. S3: Relative density maps of water droplet immersed in cyclooctane for the time from 10 to 5 ns before run termination; droplet fitted circle, droplet base height and tangent at the cross over point are shown in black, water contact angle estimates, θ_{co} , are shown for each system

Fig. S4: Magnified PSCA data for exemplar trajectory.

Fig. S5: Protein-surface contact area as a function of run time (black); time evolution of whether the protein is in contact (C) or not in contact (N) with the surface by the PAE definition (blue); PSCA for defining a PAE (horizontal red); force release point (vertical black dotted) for the protein at (a) GPS from the bound release point; (b) GPS from the transition release point; and (c) GPS from the association release point.

Fig. S6: Protein-surface contact area as a function of run time (black); time evolution of whether the protein is in contact (C) or not in contact (N) with the surface by the PAE definition (blue); PSCA for defining a PAE (horizontal red); force release point (vertical black dotted) for the protein at (a) CF₃ from the bound release point; (b) CF₃ from the transition release point; and (c) CF₃ from the association release point.

Fig. S7: Protein-surface contact area as a function of run time (black); time evolution of whether the protein is in contact (C) or not in contact (N) with the surface by the PAE definition (blue); PSCA for defining a PAE (horizontal red); force release point (vertical black dotted) for the protein at (a) GPS:sNH₂ from the bound release point; (b) GPS:sNH₂ from the transition release point; and (c) GPS:sNH₂ from the association release point.

Fig. S8: Protein-surface contact area as a function of run time (black); time evolution of whether the protein is in contact (C) or not in contact (N) with the surface by the PAE definition (blue); PSCA for defining a PAE (horizontal red); force release point (vertical black dotted) for the protein at (a) GPS:sCF₃ from the bound release point; (b) GPS:sCF₃ from the transition release point; and (c) GPS:sCF₃ from the association release point.

Fig. S9: Temporal evolution of the centre of mass of the protein from the exemplar trajectory presented in Fig 4, colorbar showing time in ns.

Fig. S10: Minimum height of protein from exemplar trajectory presented in Fig 4, average height of ligand C_T atoms (horizontal dot-dash), force release time (vertical dot line).

Fig. S11: Aligned RMSD trajectories for ubiquitin in (a and c) bulk water averaged from 20 x 20 ns blocks from the 400 ns bulk solvent simulation and (b and d) from bound release point runs for the GPS: sNH_2 system averaged from 20 runs performed. The shaded region shows 1 standard deviation for all systems. (a and b) RMSD based on C_a atoms, (c and d) RMSD based on all heavy backbone atoms calculated over all residues (blue) and excluding C-terminal residues 72-76 (red).

Fig. S12: Total number of PDEs with different threshold for defining contact.

System	I(H ₂ O) molecules per Å ²	E(H ₂ O) molecules per Å ²	T(H ₂ O) molecules per Å ²	$(\rho_I + \rho_E)_{max}$
GPS	0.096	0.034	0.130	0.67
CF3	0.093	0.026	0.119	0.69
GPS:sNH ₂	0.102	0.032	0.133	0.59
GPS:sCF ₃	0.098	0.030	0.128	0.64

Table S1: Interfacial hydration data; the count of interfacial water molecules, I(H2O); the count of embeddedwater molecules, E(H2O); the total number of ligand associated water molecules, T(H2O); and the maximum of
the relative atomic density profile of embedded and interfacial water, $(\rho_I + \rho_E)_{max}$.