## **Supporting Information**

## Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation

Chengyun Zhang, Ting Kong, Zhengkun Fu, Zhenglong Zhang\* and Hairong Zheng\*

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China E-mail: zlzhang@snnu.edu.cn; <u>hrzheng@snnu.edu.cn</u>



**Fig. S1** Conventional thermal annealing of single  $YF_3:Eu^{3+}@Au$  bundle-like particle. (a) Corresponding luminescence spectra and (b) SEM images after thermal annealing for one hour at different temperatures. Evolution of the luminescence spectra of annealed single  $YF_3:Eu^{3+}@Au$  particle is similar to that annealed single  $YF_3$  particle. Therefore, the decorated Au NPs will not significantly impact the material transformation during thermal annealing.



**Fig. S2** Conventional thermal annealing of  $YF_3:Eu^{3+}$  powder. (a) Corresponding luminescence spectra and (b) XRD spectra after thermal annealing for one hour at different temperatures, and the standard patterns of YOF with Hexagonal R-3m structure (JCPDS No.71-2100), and  $Y_2O_3$  with Cubic Ia-3 structure (JCPDS No.83-0927). The luminescence spectrum of the product annealed at 800°C, shows two characteristic peaks that correspond to Hexagonal phase YOF:Eu<sup>3+</sup> (610 nm) and Cubic phase $Y_2O_3:Eu^{3+}(611 nm)$ The XRD result confirm that the product annealed at 800°C is a mixture of YOF and  $Y_2O_3$ . When the annealing temperature increase to 1000°C, the emission peak of YOF:Eu<sup>3+</sup> (610 nm) disappeared, only shows the characteristic peak of  $Y_2O_3:Eu^{3+}(611 nm)$ , and XRD result also confirm that the final product is pure Cubic phase  $Y_2O_3$ .