Supporting Information

Toward enhanced photocatalytic activity of graphite carbon nitride through rational design of noble metal-free dual cocatalyst

Ling-Zhi Qin,†a Ye-Zhan Lin,†a Yi-Chuan Dou,a Yi-Jin Yang,a Kui Li,‡a Tao Li*, and Fu-Tian Liu*

aSchool of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
bEngineering Technology Research Center of Henan Province for Solar Catalysis, School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China.

Email: mse_lik@ujn.edu.cn, ltao84@163.com

† These two authors contribute equally to this work.
Supporting Figures.

Fig. S1. Transmission electron microscopy (TEM) image of the g-C$_3$N$_4$-Ni(OH)$_2$.

Fig. S2. The elemental mapping image of the optimal g-C$_3$N$_4$-MoS$_2$-Ni(OH)$_2$.
Fig. S3 (a) The amount of Mo and Ni, Co, Fe concentrations tested via the ICP and (b) the surface contents of metals via the XPS of the g-C$_3$N$_4$-MoS$_2$, g-C$_3$N$_4$-MoS$_2$-Ni(OH)$_2$ (CMNiOH), g-C$_3$N$_4$-MoS$_2$-Co(OH)$_2$ (CMCoOH), g-C$_3$N$_4$-MoS$_2$-Fe(OH)$_3$ (CMFeOH), respectively.

Fig. S4. (a) Effect of amount of Ni(OH)$_2$ on the UV–visible diffuse reflection spectra in g-C$_3$N$_4$-MoS$_2$-Ni(OH)$_2$. The comparison results of the UV–visible diffuse reflection spectra of g-C$_3$N$_4$, g-C$_3$N$_4$-M(OH)$_x$, g-C$_3$N$_4$-MoS$_2$, and g-C$_3$N$_4$-MoS$_2$-M(OH)$_x$, with M of (b) Ni(OH)$_2$, (c) Co(OH)$_2$ and (d) Fe(OH)$_3$.

S3
Fig. S5. The (a) UV–visible diffuse reflection spectra and (b) the band gaps of the g-C₃N₄, g-C₃N₄-MoS₂ with and without Ni(OH)₂.

Fig. S6. The Mott–Schottky plots of (a) Co(OH)₂ and (b) Fe(OH)₃.

Fig. S7. (a) Survey XPS spectrum of the g-C₃N₄-MoS₂-Ni(OH)₂ ternary heterostructure and (b) high-resolution XPS spectra of P 2p. It could be observed that there was no P in the resultant heterostructure sample.
Fig. S8. The photocatalytic hydrogen production rate of the g-C$_3$N$_4$-MoS$_2$ with different amount of MoS$_2$.

Fig. S9. The PL spectra of the g-C$_3$N$_4$-based samples with different amount of Ni(OH)$_2$, (b) MoS$_2$, and (c) types of M(OH)$_x$. The comparison results of the PL spectra of g-C$_3$N$_4$, g-C$_3$N$_4$-MoS$_2$ with and without (d) Fe(OH)$_3$, (e) Co(OH)$_2$ and (f) Ni(OH)$_2$.

S5
Fig. S10. The transient photocurrent responses of the g-C\textsubscript{3}N\textsubscript{4}-based samples with different amount of Ni(OH)\textsubscript{2}, (b) MoS\textsubscript{2}, and (c) types of M(OH)\textsubscript{x}. The comparison results of the transient photocurrent responses of g-C\textsubscript{3}N\textsubscript{4}, g-C\textsubscript{3}N\textsubscript{4}-MoS\textsubscript{2} with and without (d) Fe(OH)\textsubscript{3}, (e) Co(OH)\textsubscript{2} and (f) Ni(OH)\textsubscript{2}.
Fig. S11 The high-resolution XPS spectra of (a) C 1s, (b) N 1s, (c) Mo 3d, (d) Ni 2p, (e) Co 2p and (f) Fe 2p of the optimal g-C$_3$N$_4$-MoS$_2$ and g-C$_3$N$_4$-MoS$_2$-M(OH)$_x$ ternary heterostructures.