General Synthesis of Pd-pm (pm=Ga, In, Sn, Pb, Bi) Alloy Nanosheet Assemblies for Advanced Electrocatalysis

Hongyuan Shang ¹, Hui Xu ¹, Cheng Wang, Liujun Jin, Chunyan Chen, Guangyao Zhou, Yuan Wang and Yukou Du *

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China

* Corresponding author: Tel: 86-512-65880967, Fax: 86-512-65880089; E-mail: duyk@suda.edu.cn (Y. Du) Hongyuan Shang and Hui Xu contributed equally to this work

Chemicals and Materials

Potassium tetrachloropalladate (K₂PdCl₄, 98%), indium chloride (InCl₃, 99%), gallium chloride (GaCl₃, 99.9%), bismuth acetate (Bi(Ac)₃, 99.8%), lead acetate (Pb(Ac)₂, 95%), sannous acetate (Sn(Ac)₄, 99.5%) ascorbic acid (AA, 99%), polyvinylpyrrolidone (PVP, MW: 8000), hexacarbonyl tungsten (W(CO)₆, 99%), N, N-Dimethylformamide (DMF, 99.5%), acetic acid (99.5%), ethylene glycol (EG, 98%). All other chemical reagents used in this work were analytically pure and used without further purification. All other chemical reagents used in this work were analytically pure and used without further purification.

Fig.S1 TEM images of 3D flower-like Pd NSAs with different magnifications.

Fig.S2 Additional SEM images of (a) PdGa NSAs and (b) PdBi NSAs.

Fig.S3 Additional TEM images of (a) PdGa NSAs and (b) PdBi NSAs.

Fig.S4 SEM-EDX spectra of (a) PdGa NSAs, (b) PdIn NSAs, (c) PdSn NSAs, (d) PdPb NSAs, and (e) PdBi NSAs.

Fig.S5 SEM-EDX spectra of (a) $Pd_{86.2}Bi_{13.8}$, (b) $Pd_{63.5}Bi_{36.5}$, (c) $Pd_{95.8}Ga_{4.2}$, and (d) $Pd_{87.4}Ga_{12.6}$.

Fig.S6 Survey XPS spectra of PdGa NSAs, PdIn NSAs, PdBi NSAs, PdSn NSAs, and PdPb NSAs

Fig.S7 (a) CV curves of Pd NSAs, Pd/C, PdGa NSAs, PdIn NSAs, PdBi NSAs, PdSn NSAs, and PdPb NSAs in 1 M KOH solution. (b) The histogram of the ECSA values for different catalysts.

Fig.S8 ECSA-normalized CV curves of PdIn NSAs, PdSn NSAs, and PdSn NSAs in 1 M KOH + 1 M CH₃OH solution.

Fig.S9 ECSA-normalized CV curves of PdPb NSAs, PdIn NSAs, PdSn NSAs, and PdGa NSAs in 1 M KOH + 1 M glycerol solution.

Fig.S10 Representative TEM images of (a and b) PdGa and (c and d) PdBi after electrochemical tests.

Fig.S11 Nyquist plots (potential= 0.2 V) of PdGa, Pd, and Pd/C in 1 M KOH + 1 M CH₃OH solution. Nyquist plots (potential= 0.2 V) of PdBi, Pd, and Pd/C in 1 M KOH + 1 M glycerol solution.

Catalysts	Peaks currents from		Electrolyte	References
	CV curves			
	J _m	J _s		
	(A/mg)	(mA/cm^2)		
PdGa NSAs	1.1	2.65	1.0 M KOH +	This work
			1.0 M	
			CH ₃ OH	
Pd ₂ Cu ₂ /rGO	0.90		1 M KOH + 1	1
			M CH ₃ OH	
PdNi/RGO	0.80		0.5 M KOH +	2
			1 M CH ₃ OH	
Pd/P	0.844		1 M KOH + 1	3
			M CH ₃ OH	
Cu@Pt/C	0.62		0.5 M H ₂ SO ₄	4
			+ 0.5 M	
			CH ₃ OH	
PdCuCo/RGO	1.06	~ 0.92	1 M KOH + 1	5
			M CH ₃ OH	
Pd	0.725	1.69	0.5 M KOH +	6
NFs/PPy@MWCNT			1 M CH ₃ OH	
S				
PtRu NWs	0.82	1.16	0.1 M HClO ₄	7
			+ 0.5 M	
			CH ₃ OH	
Pt ₃ Cu/C	~ 0.70	~ 0.50	0.5 M HClO ₄ +	8
			1 M CH ₃ OH	

 Table S1 MOR electrocatalytic activity comparison of PdGa NSAs with recently reported catalysts

Catalysts	Peaks currents from		Electrolyte	References
	CV curves			
	$J_{\rm m}$	J_s		
	(A/mg_{Pd})	(mA/cm^2)		
PdBi NSAs	3.04	7.9	1.0 M KOH +	This work
			1.0 M	
			Glycerol	
Pt flowers	0.18	0.32	$0.5 \text{ M H}_2\text{SO}_4$	9
			+ 1 M	
			Glycerol	
PtNi _{0.67} Pb _{0.26} NWs/C	0.36	0.61	0.1 M HClO ₄	10
			+ 0.2 M	
			Glycerol	
Pd ₅ Ru-PEDOT/C		4.3	1 M KOH + 1	11
			M Glycerol	
Pd ₅₀ Ni ₅₀ /C	0.19		0.1 M KOH +	12
			0.1 M	
			Glycerol	
Pd ₃ Sn/phen-C	0.175		0.1 M KOH +	13
			0.5 M	
			Glycerol	
Pd-NiO _x -P/C	0.364		0.1 M KOH +	14
			0.5 M	
			Glycerol	
PdCu ₂	1.6		1 M KOH + 1	15
			M Glycerol	

 Table S2 GOR electrocatalytic activity comparison of PdBi NSAs with recently reported catalysts

References

1. H. Ye, Y. Li, J. Chen, J. Sheng, X.-Z Fu, R. Sun and C.-P Wong, J. Mater. Sci. 2018, 53, 15871-15881.

2. J. Hu, X. Wu, Q. Zhang, M. Gao, H. Qiu, K. Huang, S. Feng, T. Wang, Y. Yang, Z. Liu and B. Zhao, *Langmuir* 2018, 34, 2685–2691.

3. k. Zhang, C. Wang, D. Bin, J. Wang, B. Yan, Y. Shiraishi and Y. Du, *Catal. Sci. Technol.*, 2016, 6, 6441-6447

4. X. Long, P. Yin, T. Lei, K. Wang and Z. Zhan, *Appl. Catal. B: Environ.* 2020, 260, 118187.

5. F. Yang, B. Zhang, S. Dong, C. Wang, A. Feng, X. Fan and Y. Li, *J. Energy Chem.* 2019, 29, 72-78.

6. L.A. Fard, R. Ojani and J.B. Raoof, Int. J. Hydrogen Energy, 2016, 41, 17987-17994.

7. L. Wang, X. Zhang, Q. Wang, Y. Han, Y. Fang and S. Dong, J. Am. Chem. Soc. 2018, 140, 1142–1147.

8. Y. Zhang, Z. Cui, Y. Zhang, D. He, X. Yan, Y. Bi, Y. Li, Z. Li and X. Sun, ACS Appl. Mater. Interfaces 2014, 6, 20, 17748-17752.

9. Y. Zuo, L. Wu, K. Cai, T. Li, W. Yin, D. Li, N. Li, J. Liu and H. Han, ACS Appl. Mater. Interfaces 2015, 7, 32, 17725-17730.

10. N. Zhang, Y. Zhu, Q. Shao, X. Zhu and X. Huang, J. Mater. Chem. A, 2017, 5, 18977-18983.

11. Sthitaprajna Dash and N.Munichandraiah, Electrochim. Acta, 2015, 180, 339-352.

12. Yaovi Holade, Cláudia Morais, S. Arrii-Clacens, K. Servat, T. W. Napporn and K. B. Kokoh, *Electrocatal*. 2013, 4,167-178.

13. w. Wang, Y. Kang, Y. Yang, Y. Liu, D. Chai and Z. Lei, *Int. J. Hydrogen Energy*, 2016, 41, 1272-1280.

14. Y. Kang, W. Wang, Y. Pu, J. Li, D. Chai and Z. Lei, *Chem. Eng. J.* 2017, 308, 419-427.

15. P. Song, J.-J. Feng, F.-Y. Guo and A.-J. Wang, J. Mater. Chem. A 2015, 3, 15920-15926