Supplementary information for

Deriving 2D M₂X₃ (M=Mo, W, X=S, Se) by periodic assembly of chalcogen vacancy lines in their MX₂ counterparts

Xiaowei Wang, ‡^a Xiaoxiao Guan, ‡^b Xibiao Ren, ‡^a Tian Liu, ^b Wei Huang, ^a Juexian Cao *^b and

Chuanhong Jin *a, b

^aState Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang

University, Hangzhou, Zhejiang 310027, China.

^bHunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan

411105, China.

‡These authors contributed equally to the paper.

*Corresponding authors: jxcao@xtu.edu.cn; chhjin@zju.edu.cn

This PDF file includes:

Section 1| Structures of vacancy line and its structural differences compared to ML-Mo₂S₃ (Fig. S1-2)

Section 2| Growth of Mo₂S₃ domain in width and length (Fig. S3- 4)

Section 3| Appling our method in other TMDCs (WS₂ and WSe₂) and in other types of defects (point defects)

(Fig. S5- 6)

Section 4| Details about the structure of ML-Mo₂S₃ (Fig. S7)

Section 5| Structural stability of 2D M_2X_3 (Fig. S8-10)

Section 6| Structural of MoS_{2-x} (Fig. S11)

Section 7| Electronic structures and band gaps of ML-M₂X₃ (Fig. S12 and Table S1)

Section 8| Parameters used for calculating carrier mobilities (Fig. S13-17)

Section 9| Methods for calculating carrier mobilities (Table S2, 3)

Section 10| Transition from MoS₂ to ML-Mo₂S₃ (Fig. S18 and Table S4)

References

Supplementary Movie Description:

The movie shows the formation process from vacancy lines to a Mo_2S_3 domain and its further growth in width (y-axis). The electron probe was put to scan across the Mo_2S_3 - MoS_2 interface. During this process, sometimes the magnification was switched to a higher one to accelerate the sulfur removal around the interface, thus leading to the growth of as-formed Mo_2S_3 domains. And we also adjusted the sample position to put the Mo_2S_3 - MoS_2

interface in the center of the scanning area. The sample movement and magnification change will blur STEM images. Thus, in this supplementary movie, we deleted those blurring slices to make it more reader-friendly.

Fig. S1. Vacancy lines in MoS₂. (a, e, i) Atomic resolution ADF-STEM images of 1, 2, and 3 vacancy lines in MoS₂, respectively. (b, f, j) The corresponding structural models of (a, e, i). The red circles in b indicate the di-vacancy feature of vacancy line. (c, d, g, h, k, l) Intensity line profiles in (a, e, i). Scale bar: 1 nm.

We will first discuss the structural difference between the ML-Mo₂S₃ and initial assembled vacancy lines. As indicated by Fig. S2a, b, the difference of a certain bond length between Mo₂S₃ and assembled vacancy lines was defined as: $\sigma_{i,j} = (d_{i,p} - d_{i,j,})^2$, where i represents a certain bond length (e.g. d_{A1} as illustrated in Fig. S2a, b), j represents a certain unit (e.g. U₂ as illustrated in Fig. S2c), p, l represent Mo₂S₃ and vacancy lines, respectively. The total difference of unit j (as illustrated in Fig. S2c) was defined as: $\sigma_j = \sum_i \sigma_{i,j}$. The differences shown in the main text were the average of σ_j in the middle part of assembled defects (red dots in Fig. S2d).

Fig. S2. The structural differences between the Mo_2S_3 and assembled vacancy lines (σ). (a, b) Typical bond lengths measured in Mo_2S_3 and corresponding positions in 1 vacancy line in (b. c) Schematic diagram of units in 1, 2, 3 vacancy lines. (d) The differences (σ) between the Mo_2S_3 and assembled vacancy lines to the number of lines. U₁, U₂... represent unit 1, unit 2... as illustrated in (c). The red dots represent vacancy lines at the middle part of assembled vacancy lines (such as U₂ in 3 vacancy line in (c)), while blue dots represent those at edges (such as U₁ and U₃ in 3 vacancy lines in (c)). (e)

The differences of bond length between the Mo_2S_3 phase and assembled vacancy lines in certain positions to the number of lines. " d_{A1} ", " d_{A2} "... represent typical bond lengths as illustrated in (a, b).

2. Growth of Mo₂S₃ domain in width and length

Fig. S3. Growth of Mo_2S_3 in armchair direction. (a, b) Temporal ADF-STEM images of the extension of vacancy lines in y-direction. (a) Extension from 1 vacancy line to 2 vacancy lines; (b) Extension from 2 vacancy lines to 3 vacancy lines. "A" and "B" indicate half unit cell, same as that in i. Scale bars: a: 1 nm; (c-e) Temporal ADF-STEM images of the growth of Mo_2S_3 in y-direction, with their corresponding structural models displayed in (f, g, h). Scale bars: 1 nm. (i) Top and side views of ML-

 Mo_2S_3 . The red and blue boxes indicate half unit cell. "A" and "B" indicate half unit cell. (j) Top and side views of the interface of Mo_2S_3/MoS_2 . (k) Side view of the structural model of Mo_2S_3 .

The extensions of Mo₂S₃ domain along armchair direction are accomplished by the step of the halfwidth of a vacancy line (A or B as shown in Fig. S3i), as indicated in Fig. S3c-e and 3f, h, i. The extension step of half unit cell is due to: 1) The unit cell in Mo₂S₃ can be divided in half, as indicated in Fig. S3i (labeled as A and B). In the top view, the top half unit in Mo₂S₃ in Fig. S3i (B, blue box) is identical to the bottom half unit (A, red box). 2) The structure of the interface between MoS₂/Mo₂S₃ (BAB, BAB represents the sequence of half units in Mo₂S₃) is very similar to that in Mo₂S₃ (BAB), as comparing the side views in Fig. S3j and 3k. Thus, the interface in Fig. S3f (MoS₂/AB) should be identical to that in Fig. S3g (MoS₂/BA) when viewing in z-direction. All in all, the smallest unit in the extension of Mo₂S₃ in y-direction is the half-width of a vacancy line (A or B).

Fig. S4. The strain maps of vacancy lines and Mo₂S₃ in MoS₂ matrix. (a, e) GPA calculated ε_xx , ε_yy , Rotation, ε_xy strain maps in (b, d). The black dot line indicates the growth of line vacancies. (b, d) Temporal ADF-STEM images of vacancy lines. (c), GPA calculated ε_xx , ε_yy , Rotation, ε_xy strain maps in (f). There is no strain (contrast) in ε_xx maps, which further prove the perfect epitaxy of Mo₂S₃ and MoS₂ along zigzag direction. Scale bar: 10 nm. (g-i), Temporal ADF-STEM images of the extension of vacancy lines in x-direction. Scale bars: 10 nm.

3. Appling our method in other TMDCs (WS₂ and WSe₂) and in other types of defects (point defects)

Fig. S5. Chalcogen vacancy lines and M_2X_3 structure in WS₂, and WSe₂, taking similar configuration to that in MoS₂. (a, e, i, m) ADF-STEM images of 1, 3 vacancy lines in WS₂, and 1, 1.5 vacancy lines in WSe₂, respectively. The structures of vacancy lines in WS₂ and WSe₂ are very similar to that in MoS₂, as compared with Fig. S1. (b, f, j, n) Corresponding structural models of (a, e, i, m), respectively. (c, d, g, h, k, l, o, p) Intensity line profiles in (a, e, i, m). Scale bar: 1 nm.

Fig. S6. Assembly of point defects in 2D TMDC materials. (a) Schematic diagram of the transition of ordered point defects into crystal by the periodic assembly. (b, d) Two examples of transition showing the ordered arrangement of point defects (0D) into new structural 2D materials, i.e., W_6Se_8/W_3Se_4 and W_8Se_{12}/W_2Se_3 , respectively. And their corresponding structural models are displayed in (c) and (e), respectively. Scale bar: 1 nm.

4. Details about the structure of ML-Mo₂S₃

Fig. S7. ML-Mo₂S₃ and bulk Mo₂S₃. (a, b) ADF-STEM images of ML-Mo₂S₃ and its corresponding FFT. (c) Enlarged image of FFT in the blue box in (b). (d) Lattice fringes obtained by inverse FFT of corresponding lattice planes in (c), with the structural models displayed besides. (e, f, i) Top and side views of structural model of ML-Mo₂S₃, Mo₂S₃ bulk and 1 vacancy line, respectively. The black and grey boxes indicate the unit cells. (g) Cleavage energy of Mo₂S₃ bulk to interlayer distance. (j) Side view of ML-Mo₂S₃.

The structure of bulk Mo_2S_3 is shown in Fig. S7f. The side view of bulk Mo_2S_3 indicates that it is also a layer-structure material, and can be easily isolated, with dissociation energy of 0.183 J/m² (30 meV/atom) as demonstrated in Fig. S7g. However, the structure of ML-Mo₂S₃ (obtained in our experiments) is dramatically different from the MLB-Mo₂S₃ (exfoliated from bulk Mo₂S₃), as compared with Fig. S7e and 7f. Furthermore, the structure of ML-Mo₂S₃ is very similar to that of the vacancy line, as compared with Fig. S7i and 7j.

5. Structural stability of 2D M₂X₃

Fig. S8. Air stability of ML-Mo₂S₃. (a, b) ADF-STEM images of Mo₂S₃ before exposing into the air. Inserted on the left: Enlarged filtered image. (c, d) STEM images of Mo₂S₃ after exposing in the air for 10 min. "a", "b", "c", "d", indicate the adopted Mo cluster which serves as position markers.

To examine the air stability of ML-Mo₂S₃, we exposed the as-formed Mo₂S₃ in the air for 10 mins by pulling out the sample from TEM. We then inserted the sample back into TEM, and observed the changes. STEM images in Fig. S8a, b and 8c, d were acquired at the same position. As indicated by Fig. S8d that, the Mo₂S₃ domain still kept the crystalline state after air exposition. It should be noted that, the hole between positions "a", "c" were damaged by chemical etching of electron beam during imaging process when we inserted back the sample (To prevent the influence of high temperature on the phase, we conducted the experiments at room temperature, but inevitably lead to the significant chemical etching at room temperature).

Fig. S9. Phonon dispersion of monolayer Mo_2S_3 , Mo_2Se_3 , Mo_2Te_3 , W_2S_3 , W_2Se_3 , W_2Te_3 , respectively. The phonon spectra were calculated using PHONONPY code. There are no negative phonon frequencies in ML-M₂X₃ (M=Mo,W; X=S, Se, Te) except W_2Te_3 , which indicated that these structures are stable.

Fig. S10. *Ab initio* molecular dynamics (AIMD) of Mo_2S_3 with the canonical (NVT) ensembles at 300 K (a) and 1000 K (b), respectively.

6. The structural of MoS_{2-x}

Fig. S11. (a, d-f) DFT-calculated structures of MoS_{2-x} (2-x=1, 1.25, 1.67, 1.75). (b) DFT-calculated structures by previous work¹. (c) Formation energies of different MoS_{2-x} phase (2-x=1, 1.25, 1.67, 1.75) and Mo_4S_4 (black line, calculated based on the atomic model in a previous study¹). As seen, ML-Mo₂S₃ becomes the most stable configuration for a chemical potential window $\mu s \in (-1.79 \text{ eV}, -1.65 \text{ eV})$ over all the structures.

7. Electronic structures and band gaps of ML-M₂X₃

Fig. S12. Electronic band structures of monolayer Mo₂S₃, W₂S₃, Mo₂Se₃, W₂Se₃, Mo₂Te₃, W₂Te₃, respectively. They were calculated by PBE without (left) and with (middle) SOC, and also by HSE06 (right).

64	a	b	Eg(PBE)	Eg (SOC)	E _g (HSE06)			
Structure	(4	Å)	(eV)					
MoS ₂	3.182	11.025	/	/	/			
Mo ₂ S ₃	3.254	9.097	0.429(D)*	0.406(I) †	0.885(D)			
W_2S_3	3.239	9.056	0.320(D)	0.325(I)	0.666(D)			
Mo ₂ Se ₃	3.351	9.293	0.375(I)	0.339(I)	0.741(D)			
W ₂ Se ₃	3.332	9.241	0.173(I)	0.127(I)	0.394(D)			
Mo ₂ Te ₃	3.481	9.680	/	/	/			
W ₂ Te ₃	3.489	9.613	/	0.085(I)	/			
D: Direct;	I: Indirect							

Table S1. Structural information and band gaps of ML-M₂X₃

8. Parameters used for calculating carrier mobilities

Fig. S13. Carrier effective masses as a function of angle. The direction of x/y-axis is indicated in the atomic model within Fig. 3 in the main text. "h" represents hole while "e" represents electron, respectively. 0° represents x direction while 90° represents y direction. Refer to Fig. 3d in the main text for more details about k space.

Fig. S14. Detailed analysis for the origin of large effective mass of ML-W₂Se₃. (a, b) The conduction band structure of ML-W₂Se₃. (c) The CBM of ML-W₂Se₃ along different direction. 0° represents x direction while 90° represents y direction. Thus, the flat band feature near CBM along y direction results in the large effective mass of electron (45.518) as shown in Table 1 in the main text.

Fig. S15. Band energies of the CBMs and VBMs of monolayer Mo₂S₃, Mo₂Se₃, W₂S₃, W₂Se₃ to the vacuum energy as a function of the lattice dilation, respectively.

Fig. S16. Relative errors on the calculated deformation potential. (a-d) Band energy of the CBM (a, b), VBM (c,d) of ML-Mo₂S₃ to the vacuum energy as a function of lattice dilation, respectively. Here, the band energies were calculated with the PBE potential (SOC considered), and the solid lines are the

fitting curves. Insets show the standard errors of the fitted slope, which corresponds to the deformation potential. It should be noted that the linearity of E_{1x-CBM} is not good in the range of -0.01 to 0.01. Thus, we chose a range from -0.005 to 0.005 for the deformation potential calculation. (e, f, h) Band energy of the CBM (e, f), VBM (h) of ML-Mo₂S₃ to the vacuum energy as a function of lattice dilation, respectively. (g) Summarized Relative errors for the deformation potential of ML-M₂X₃ for the *x* and *y* directions.

Fig. S17. Calculated elastic moduli in x and y direction of ML-Mo₂S₃, Mo₂Se₃, W₂S₃, W₂Se₃, respectively.

9. Methods for calculating carrier mobilities

$$\mu_{\mathbf{x}} = \frac{e\hbar^3 C_{\mathbf{x}}}{k_B T m_x m_d (E_{1x})^2} \tag{1}$$

Besides the formalism displayed in the main text (equation (2)) or equation (1) shown above, there are other methods for calculating carrier mobilities. Equation (2) is the formalism for calculating the carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering^{3,4}.

$$\mu_{2D} = \frac{e\hbar^3 (5C_x + 3C_y)/8}{k_B T m_x m_d (9E_{1x}^2 + 7E_{1x}E_{1y} + 4E_{1y}^2)/20}$$
(2)

where m_x is the effective mass along x direction, m_d is the average effective mass determined by $m_d = \sqrt{m_x m_y}$. C_x (or C_y) and E_{1x} (or E_{1y}) represent elastic modulus and deformation potentials in the propagation direction of the longitudinal acoustic wave, respectively. Similarly, the carrier mobility along the y direction is given by equation (1) and (2) when x is interchanged with y.

And the anisotropic ratio R_{ani} is defined as:

$$R_{ani} = \max(\mu_x, \mu_y) / \min(\mu_x, \mu_y)$$
(3)

The calculated results are shown in Table S2. In equation (1), the carrier mobility is the function of elastic constant and deformation potential along only the longitudinal charge transport direction. While in equation (2), carrier mobility depends on all the three parameters, namely, elastic constant, carrier effective mass and deformation potential, not only along the longitudinal charge transport direction but also the in-plane transverse direction. It is worth to mention that the method based on equation (1) will overestimate the carrier mobility and anisotropy ratio ($R_{ani}=max(\mu_x, \mu_y)/min(\mu_x, \mu_y)$), while the method based on equation (2) usually overcorrects the carrier mobility in equation (1) and lowers the carrier mobility (relative to the experimental ones) and anisotropy noticeably⁴, which can also be seen in Table S2. For example, the mobility of electrons in ML-Mo₂S₃ along x direction decrease from ~27000 cm²V⁻¹s⁻¹ (SOC, or ~123000 cm²V⁻¹s⁻¹ without SOC) to 907 cm²V⁻¹s⁻¹ (SOC, or ~3509 cm²V⁻¹s⁻¹)

 $^{1}s^{-1}$ without SOC). Moreover, it fairly reduces the anisotropy in the hole mobility between the x and y directions (from 34.2 to 1.7 for hole mobility along different directions in ML-Mo₂S₃). Thus, the corrected results in Table S2 can be used as a good reference.

Materi als	Carrier type		Eq1			Eq2			
		μ _x (cm ² V	μ_y	R _{ain}	$\mu_x \mu_y \ (cm^2 V^{-1} s^{-1})$		R _{ain}		
Mo ₂ S ₃	electron	123240	46	2679.13	3509	99	35.44		
	hole	358	11104	31.02	731	344	2.13		
Mo ₂ S ₃	electron	27662	145	190.77	907	303	2.99		
(SOC)	hole	250	8551	34.2	506	301	1.68		
Mo ₂ Se ₃	electron	142398	204	698.03	3378	425	7.95		
	hole	335	1956	5.84	683	109	6.27		
W2S3	electron	96394	108	892.54	5094	223	22.84		
	hole	761	21806	28.65	1547	844	1.83		
W ₂ Se ₃	electron	12219	22	571.47	11717	24	487.65		
	hole	1448	2718	1.88	2719	342	7.96		
MoS ₂ ⁴	electron	115	111	1.04	110	114	1.04		
	hole	289	314	1.09	290	313	1.08		

Table S2. Calculated carrier mobility with different methods

 μ_x and μ_y were calculated by setting the temperature to 300 K. "Eq1" and "Eq2" represent that the results were calculated by equation (1) and equation (2), respectively.

Structure	Carrier	m _x */m ₀	m _y */m ₀	E _{1x}	E _{1y}	Cx	Cy	μ _x	μ _y
	type	G-X	G-Y	(eV)		(Jm ⁻²)		$(cm^2V^{-1}s^{-1})$	
SiS	electron	0.16	0.51	4.91	1.5	63.13	115.04	1223	7493
(Our results)	hole	0.24	6.34	3.75	1.4	63.13	115.04	324	160
SiS ²	electron	0.16	0.50	4.77	1.33	67.60	111.50	1400	9490
(Previous work)	hole	0.24	5.92	3.71	1.52	67.60	111.50	366	146
Mo ₂ S ₃	electron	0.92	1.33	0.31	3.52	126.71	123.63	27662	145
(soc)	hole	0.35	1.2	6.91	0.63	126.71	123.63	250	8551
Mo ₂ S ₃	electron	0.229	3.873	0.17	3.83	122.71	116.15	420342	46
	hole	0.271	1.176	6.79	0.58	122.71	116.15	371	11104

Table S3. Calculated carrier mobility compared with previous work.

 m_x^* and m_y^* are carrier effective masses for directions x and y, respectively; E_{1x} (E_{1y}) and C_x (C_y) are the deformation potential and 2D elastic modulus for the x (y) direction. μ_x and μ_y were calculated using equation (1) with the temperature T set to 300 K.

10. Transition from MoS₂ to Mo₂S₃

Fig. S18. Transition from monolayer MoS₂ and MLB-Mo₂S₃ (exfoliated from bulk Mo₂S₃) to monolayer Mo₂S₃ (labeled as ML-Mo₂S₃, obtained in our experiments). (a, b) DFT optimization of ML-Mo₂S₃ and β-Mo₂S₃ (another theoretically predicted structure) from MoS₂ by removing two S atoms per cell at different positions, as indicated by red dot circles. (c) Transformation from MLB-Mo₂S₃ to α-Mo₂S₃ (another theoretically predicted structure) and finally to ML-Mo₂S₃ (obtained in our experiments). The red and blue arrows/ circles indicate the moving of S atoms. (d) PBE calculated band structures of MLB-Mo₂S₃ (metallic), α-Mo₂S₃, ML-Mo₂S₃, and β-Mo₂S₃, respectively. (e) Phonon dispersion of the β-Mo₂S₃. There are no negative phonon frequencies in β-Mo₂S₃, which indicated that its structure is stable.

Table S4. Structural information and band gaps of different types of single layer Mo ₂ S ₃										
System	Ef	a	b	Symmetry	ΔΕ	Eg(PBE)	Eg(HSE)	W		
	(eV)	(Å)		-	(eV)	(eV)		(eV)		
MoS ₂	-87.191	3.182	11.025	P-6m2	/	1.67	1.96	5.88		
MLB-Mo ₂ S ₃	-74.785	3.219	9.226	P21/m	0.000	0.00	/	4.49		
a-Mo2S3	-75.372	3.258	9.319	P21/m	-0.587	0.00	/	5.10		
ML-M02S3	-75.650	3.254	9.099	Pmc21	-0.865	0.42	0.90	5.44		
β-M02S3	-75.435	3.195	9.424	Pm	-0.650	0.20	0.24	5.18		
Exp-Mo ₂ S ₃	/	3.171	9.027	Pmc21	/	/	/	/		

. . . 0 1.00 **a** 4 a ..

ML-Mo₂S₃ is the theoretically predicted structure that accords well with our experimental results. ML-Mo₂S₃ exhibits the lowest formation energy (-75.650 eV/cell) than that of any other single layer form of

Mo₂S₃. Exp-Mo₂S₃ is the structure obtained experimentally.

References

- 1T. Joseph, M. Ghorbani-Asl, A. G. Kvashnin, K. V. Larionov, Z. I. Popov, P. B. Sorokin and A. V. Krasheninnikov, J. Phys. Chem. Lett., 2019, 10, 6492-6498.
- 2J.-H. Yang, Y. Zhang, W.-J. Yin, X. G. Gong, B. I. Yakobson and S.-H. Wei, Nano Letters, 2016, **16**, 1110–1117.
- 3H. Lang, S. Zhang and Z. Liu, Phys. Rev. B, 2016, 94, 235306.
- 4A. Rawat, N. Jena, D. Dimple and A. De Sarkar, J. Mater. Chem. A, 2018, 6, 8693–8704.