Supplementary to Magnetic i-MXene: a new class of multifunctional two-dimensional materials

Qiang Gao and Hongbin Zhang

S1 Spin configuration

Figure S1: Crystal structure for i-MXene $(M_{2/3}M'_{1/3})_2X$ in hexagonal (red) and rectangular (green) lattices. The "A" and "B" symbols denote the corresponding atoms lie above and below the center layer X (X = C and N) atoms. In the following structures, the atom labels have the same meaning as this figure.

S2 Noncolinear spin configurations

In the hexagonal lattice, the doped transition metal M' of intralayer forms a triangular lattice in the $2 \times 2 \times 1$ super cell as showing in Fig. S3, implying the noncolinear antiferromagnetic state may be stable. Table S1 lists the noncolinear antiferromagnetic candidates.

Table S1: The noncolinaer antiferromagnetic candidates

spin	Candidate
$AFM-\beta$	$(Sc_{2/3}Mo_{1/3})_2C (Nb_{2/3}Mn_{1/3})_2C (Zr_{2/3}Mn_{1/3})_2C (Sc_{2/3}Nb_{1/3})_2C$
$AFM-\alpha$	$(Ta_{2/3}Mn_{1/3})_2C (Mo_{2/3}Fe_{1/3})_2C (Zr_{2/3}Ni_{1/3})_2C (Zr_{2/3}Fe_{1/3})_2C$
	$(Hf_{2/3}Mn_{1/3})_2C (Zr_{2/3}Co_{1/3})_2N (Ti_{2/3}Fe_{1/3})_2N (Zr_{2/3}Mn_{1/3})_2N$
	$(Zr_{2/3}Fe_{1/3})_2N (V_{2/3}Mn_{1/3})_2C (Hf_{2/3}Cr_{1/3})_2N$

Figure S2: Spin configurations for i-MXene in rectangular lattice: [a] ferromagnetic (FM) and [b] interlayer antiferromagnetic (AFM-0) spin state. For comparison with hexagonal i-MXene in noncolinear spin configuration, we also calculate rectangular i-MXene in similar spin configurations. [c] AFM-1 and [d] AFM-2 are the interlayer antiferromagnetic coupling spin configurations, while [e] AFM-3 and [f] AFM-4 are the interlayer ferromagnetic coupling spin configurations. Noncolinear antiferromagnetic spin configurations for the interlayer coupling of antiferromagnetic (AFM- α) [i] and ferromagnetic (AFM- β) [j] cases. S2

Figure S3: The schematic diagrams of exchange coupling parameters [a] J_{inter} and [b] J_{intra} for i-MXene (Hf_{2/3}Fe_{1/3})₂C. [a] AFM-0: The exchange coupling of Fe atoms of above and below layers is set as antiferromagnetic, while the intralayer coupling for Fe is set as ferromagnetic. [b] AFM- β : The intralayer coupling of Fe atoms is set as noncolinear antiferromagnetic while the interlayer coupling of Fe atoms are ferromagnetic. It should be noticed there are in total 6 nearest neighbor Fe atoms for each Fe, of which four are antiferromagnetic and two are ferromagnetic to the center of Fe atom of the hexagonal Fe atoms.

S3 DOS for some i-MXene.

In order to discuss i-MXene with spin configuration transition from NM to FM, we have shown the density of states (DOS) for $(Zr_{2/3}Ti_{1/3})_2N$, $(Ti_{2/3}Ru_{1/3})_2C$ and $(Zr_{2/3}Ru_{1/3})_2C$ in Fig. S4. We also show the Fe atomic DOS in $(Hf_{2/3}Fe_{1/3})_2C$ with the hexagonal and rectangular lattice in order to understand the spin configuration transition from AFM to FM.

Figure S4: Density of states comparison between rectangular (Rect.) and hexagonal (Hex.) lattices for [a] $(Zr_{2/3}Ti_{1/3})_2N$, [b] $(Ti_{2/3}Ru_{1/3})_2C$ and [c] $(Zr_{2/3}Ru_{1/3})_2C$ in non-magnetic spin configuration.

Figure S5: Fe atomic DOS in $({\rm Hf}_{2/3}{\rm Fe}_{1/3})_2{\rm C}$ with e hexagonal and rectangular lattice.

S4 Band structures and AHC for $(Ti_{2/3}V_{1/3})_2C$.

Figure S6: [a] Band structures for $(Ti_{2/3}V_{1/3})_2C$ in rectangular (Rect.) and hexagonal (Hex.) lattices. In rectangular lattice, the band structures of spin up and spin down (dn) are overlapping. For the hexagonal lattice, here we use the k-path of rectangular lattice for comparison. [b] Anomalous hall conductivity for $(Ti_{2/3}V_{1/3})_2C$ in the hexagonal lattice.

S5 DOS and Seebeck coefficients for $(Sc_{2/3}Cd_{1/3})_2C$ and $(Sc_{2/3}Hg_{1/3})_2C$.

Figure S7: DOS for $(Sc_{2/3}Cd_{1/3})_2C$ [a] and $(Sc_{2/3}Hg_{1/3})_2C$ [b]. Seebeck coefficient as a function of chemical potential for $(Sc_{2/3}Cd_{1/3})_2C$ [a] and $(Sc_{2/3}Hg_{1/3})_2C$ [b]. The "rect." and "hex." denote the results in rectangular and hexagonal lattices.

S6 Projected band structures

[b]

-0.60

Г

Figure S8: Orbital projected band structures for $(Hf_{2/3}Fe_{1/3})_2C$ (a) and $(Zr_{2/3}Fe_{1/3})_2C$. The Fe 3d-2 and Fe 3d+2 symbols denote the Fe $3d_{xy}$ and Fe- $3d_{x^2-y^2}$ orbitals, respectively.

κ

Г

М

[b]

Figure S9: Orbital projected band structures for Fe atoms in $(Ta_{2/3}Fe_{1/3})_2C$ without and with SOC. The Fe 3d+1 and Fe 3d-1 symbols denote the Fe $3d_{zx}$ and Fe $3d_{yz}$ orbitals, respectively.

S7 MAE

Table S2: MAE values for i-MX ene in hexagonal and rectangular lattices in unit of meV/f.u. $\Delta E=E_{hex.}-E_{rect.}$

Com.	hex	rect.	ΔE	Comp.	hex	rect.	ΔE
$(Hf_{2/3}Cr_{1/3})_2C$	0.092	0.0431	0.0489	$({\rm Hf}_{2/3}{\rm Fe}_{1/3})_2{\rm C}$	1.3854	1.4141	-0.0287
$({\rm Hf}_{2/3}{\rm Hg}_{1/3})_{2}{\rm C}$	-0.0001	-0.7499	0.7498	$({\rm Hf}_{2/3}{\rm Mn}_{1/3})_{2}{\rm C}$	-0.0567	-0.0979	0.0412
$(Mo_{2/3}Cr_{1/3})_2C$	0.0561	-0.0114	0.0675	$(Mo_{2/3}Fe_{1/3})_2C$	-0.0558	-0.0018	-0.054
$(Mo_{2/3}Mn_{1/3})_2C$	0.0109	-0.0319	0.0428	$(Nb_{2/3}Co_{1/3})_2C$	0.0158	-0.041	0.0568
$(Nb_{2/3}Fe_{1/3})_2C$	0.0286	0.0253	0.0033	$(Nb_{2/3}Mn_{1/3})_2C$	0.201	0.1018	0.0992
$(Nb_{2/3}Sc_{1/3})_2C$	0.0001	0.0	0.0001	$(Sc_{2/3}Cr_{1/3})_2C$	0.0775	0.0005	0.077
$(Sc_{2/3}Mn_{1/3})_2C$	0.0357	0.0159	0.0198	$(Sc_{2/3}Mo_{1/3})_2C$	0.0042	0.0	0.0042
$(Sc_{2/3}Nb_{1/3})_2C$	-0.0001	-0.0007	0.0006	$(Sc_{2/3}Ta_{1/3})_2C$	0.001	0.0665	-0.0655
$(Sc_{2/3}V_{1/3})_2C$	-0.009	0.0024	-0.0114	$(Ta_{2/3}Co_{1/3})_2C$	0.3184	0.2116	0.1068
$(Ta_{2/3}Fe_{1/3})_2C$	0.8628	0.3584	0.5044	$(Ta_{2/3}Mn_{1/3})_2C$	-0.0442	0.0868	-0.131
$(Ta_{2/3}Nb_{1/3})_2C$	0.0	-0.0001	0.0001	$(Ti_{2/3}Cr_{1/3})_2C$	0.0015	-0.0015	0.003
$(Ti_{2/3}Mo_{1/3})_2C$	0.0339	0.0253	0.0086	$(Ti_{2/3}Nb_{1/3})_2C$	0.0193	0.0254	-0.0061
$(Ti_{2/3}Pd_{1/3})_2C$	-0.0211	-0.0051	-0.016	$(Ti_{2/3}Sc_{1/3})_2C$	-0.0005	0.0023	-0.0028
$(Ti_{2/3}Ta_{1/3})_2C$	0.0565	-0.0093	0.0658	$(Ti_{2/3}V_{1/3})_2C$	0.0216	0.0195	0.0021
$(Ti_{2/3}Y_{1/3})_2C$	0.038	0.0083	0.0297	$(V_{2/3}Co_{1/3})_2C$	-0.0124	-0.0467	0.0343
$(V_{2/3}Fe_{1/3})_2C$	0.0535	0.0667	-0.0132	$(V_{2/3}Mn_{1/3})_2C$	0.0993	0.1013	-0.002
$(V_{2/3}Rh_{1/3})_2C$	-0.0505	-0.0708	0.0203	$(V_{2/3}Sc_{1/3})_2C$	-0.0128	0.0016	-0.0144
$(V_{2/3}Ti_{1/3})_2C$	0.0057	0.0059	-0.0002	$(Zr_{2/3}Cr_{1/3})_2C$	0.0056	0.0349	-0.0293
$(Zr_{2/3}Fe_{1/3})_2C$	0.7446	0.8125	-0.0679	$(Zr_{2/3}Hf_{1/3})_2C$	-0.6085	-0.0467	-0.5618
$(Zr_{2/3}Mn_{1/3})_2C$	0.0688	0.132	-0.0632	$(Zr_{2/3}Ni_{1/3})_2C$	0.0587	0.0348	0.0239
$({\rm Hf}_{2/3}{\rm Co}_{1/3})_2{\rm N}$	0.1272	0.1094	0.0178	$({\rm Hf}_{2/3}{\rm Cr}_{1/3})_2{\rm N}$	0.7536	0.6041	0.1495
$({\rm Hf}_{2/3}{\rm Fe}_{1/3})_2{\rm N}$	0.3874	-0.5089	0.8963	$(Hf_{2/3}Mn_{1/3})_2N$	-0.4437	-0.5283	0.0846
$({\rm Hf}_{2/3}{\rm Sc}_{1/3})_2{\rm N}$	-0.6875	-1.0708	0.3833	$(Hf_{2/3}Zr_{1/3})_2N$	0.054	0.0934	-0.0394
$(Ti_{2/3}Fe_{1/3})_2N$	-0.1369	-0.1276	-0.0093	$(Ti_{2/3}Hf_{1/3})_2N$	0.7144	0.4739	0.2405
$(Ti_{2/3}Mn_{1/3})_2N$	0.0735	0.0024	0.0711	$(Ti_{2/3}Nb_{1/3})_2N$	-0.0157	0.0496	-0.0653
$(Ti_{2/3}Sc_{1/3})_2N$	0.0026	0.002	0.0006	$(Ti_{2/3}V_{1/3})_2N$	0.0029	0.0049	-0.002
$(Ti_{2/3}Y_{1/3})_2N$	-0.021	0.0029	-0.0239	$(Zr_{2/3}Co_{1/3})_2N$	-0.0404	-0.0613	0.0209
$(Zr_{2/3}Fe_{1/3})_2N$	-0.0638	-0.0768	0.013	$(Zr_{2/3}Hf_{1/3})_2N$	0.0558	-0.1121	0.1679
$(Zr_{2/3}Mn_{1/3})_2N$	0.056	0.0532	0.0028	$(Zr_{2/3}Sc_{1/3})_2N$	0.0	0.0454	-0.0454
$(Zr_{2/3}V_{1/3})_2N$	0.0252	0.0145	0.0107	$(Ti_{2/3}Ti_{1/3})_2C$	0.0063	0.0	0.0063
$(Ti_{2/3}Ti_{1/3})_2N$	-0.0223	0.0	-0.0223	, ,			

S8 Energy comparison for Hexagonal and rectangular lattice

Table S3: The energy comparison for i-MXene in NM and FM spin configurations within hexagonal and rectangular lattice. E_{NM} and E_{FM} denote the energy of NM and FM spin configurations in unit of eV/atom. M_{tot} is the total magnetic moment in unit of $\mu_B/f.u$.

	Rect.			Hex.			
commpound	E_{NM}	E_{FM}	M_{tot}	E_{NM}	E_{FM}	M_{tot}	
$(Hf_{2/3}Cr_{1/3})_2C$	0.0034	0.0	0.4118	0.0034	0.0	0.4293	
$({\rm Hf}_{2/3}{\rm Hg}_{1/3})_{2}{\rm C}$	0.0022	0.0	0.2573	0.0005	0.0	0.344	
$(Mo_{2/3}Cr_{1/3})_2C$	0.0085	0.0	0.8835	0.0109	0.0	0.842	
$(Mo_{2/3}Fe_{1/3})_2C$	0.0452	0.0	1.182	0.044	0.0	1.173	
$(Mo_{2/3}Mn_{1/3})_2C$	0.0588	0.0	1.2948	0.0594	0.0	1.318	
$(Nb_{2/3}Co_{1/3})_2C$	0.0039	0.0	0.4637	0.0039	0.0	0.4497	
$(Nb_{2/3}Fe_{1/3})_2C$	0.0283	0.0	1.0397	0.0288	0.0	1.0473	
$(Ta_{2/3}Co_{1/3})_2C$	0.0053	0.0	0.4113	0.0058	0.0	0.453	
$(Ta_{2/3}Mn_{1/3})_2C$	0.0283	0.0	0.7803	0.0283	0.0	0.7713	
$(Ti_{2/3}Nb_{1/3})_2C$	0.0125	0.0	0.7057	0.0134	0.0	0.7147	
$(Ti_{2/3}Pd_{1/3})_2C$	0.0041	0.0	0.3772	0.0049	0.0	0.382	
$(Ti_{2/3}Sc_{1/3})_2C$	0.0093	0.0	0.8355	0.0113	0.0	0.836	
$(Ti_{2/3}Ta_{1/3})_2C$	0.0112	0.0	0.725	0.0134	0.0	0.718	
$(Ti_{2/3}Ti_{1/3})_2C$	0.0278	0.0	0.8935	0.0414	0.0	0.9207	
$(V_{2/3}Co_{1/3})_2C$	0.0064	0.0	0.638	0.0073	0.0	0.6497	
$(V_{2/3}Fe_{1/3})_2C$	0.0331	0.0	1.0948	0.0335	0.0	1.1273	
$(V_{2/3}Mn_{1/3})_2C$	0.0277	0.0	0.697	0.0275	0.0	0.705	
$(V_{2/3}Rh_{1/3})_2C$	0.0009	0.0	0.3035	0.0005	0.0	0.3033	
$(Zr_{2/3}Cr_{1/3})_2C$	0.0034	0.0	0.3828	0.0034	0.0	0.425	
$(Zr_{2/3}Fe_{1/3})_2C$	0.011	0.0	0.8817	0.0129	0.0	0.9173	
$(Zr_{2/3}Ni_{1/3})_2C$	0.0033	0.0	0.3608	0.0032	0.0	0.336	
$({\rm Hf}_{2/3}{\rm Co}_{1/3})_2{\rm N}$	0.0051	0.0	0.3463	0.0059	0.0	0.3637	
$({\rm Hf}_{2/3}{\rm Cr}_{1/3})_2{\rm N}$	0.0012	0.0	0.2668	0.0016	0.0	0.3557	
$({\rm Hf}_{2/3}{\rm Mn}_{1/3})_2{\rm N}$	0.035	0.0	0.7438	0.036	0.0	0.6857	
$({\rm Hf}_{2/3}{\rm Zr}_{1/3})_2{\rm N}$	0.0025	0.0	0.5643	0.0031	0.0	0.5553	
$(Ti_{2/3}Fe_{1/3})_2N$	0.0385	0.0	1.1135	0.0382	0.0	1.1017	
$(Ti_{2/3}Hf_{1/3})_2N$	0.0035	0.0	0.5707	0.0043	0.0	0.5777	
$(Ti_{2/3}Mn_{1/3})_2N$	0.0416	0.0	0.804	0.0413	0.0	0.8093	
$(Ti_{2/3}Sc_{1/3})_2N$	0.0121	0.0	0.5993	0.0121	0.0	0.5753	
$(Ti_{2/3}Ti_{1/3})_2N$	0.0003	0.0	0.5787	0.0144	0.0	0.575	
$(Ti_{2/3}Y_{1/3})_2N$	0.002	0.0	0.3975	0.0016	0.0	0.3777	
$(Zr_{2/3}Co_{1/3})_2N$	0.0094	0.0	0.4592	0.0101	0.0	0.469	
$({\rm Zr}_{2/3}{\rm Fe}_{1/3})_2{\rm N}$	0.0341	0.0	1.235	0.0379	0.0	1.266	
$({\rm Zr}_{2/3}{\rm Hf}_{1/3})_2{\rm N}$	0.0053	0.0	0.5257	0.0058	0.0	0.53	
$(\mathrm{Zr}_{2/3}\mathrm{Mn}_{1/3})_2\mathrm{N}$	0.0324	0.0	1.0635	0.034	0.0	1.07	
$(Zr_{2/3}Y_{1/3})_2N$	0.0035	0.0	0.4002	0.0039	0.0	0.4207	

Table S3: The energy comparison for i-MXene in NM and FM spin configurations within hexagonal and rectangular lattice. E_{NM} and E_{FM} denote the energy of NM and FM spin configurations in unit of eV/atom. M_{tot} is the total magnetic moment in unit of $\mu_B/f.u.$. (continued)

	Rect.			Hex.		
commpound	NM	$\mathbf{F}\mathbf{M}$	M_{tot}	NM	$\mathbf{F}\mathbf{M}$	M_{tot}
$(Nb_{2/3}Mn_{1/3})_2C$	0.0299	0.0	0.7793	0.0295	0.0	0.799
$(Nb_{2/3}Sc_{1/3})_2C$	0.0017	0.0	0.4298	0.0024	0.0	0.412
$(Sc_{2/3}Cr_{1/3})_2C$	0.0095	0.0	1.101	0.0066	0.0	1.1063
$(Sc_{2/3}Mn_{1/3})_2C$	0.0013	0.0	0.6163	0.0011	0.0	0.6443
$(Sc_{2/3}Mo_{1/3})_2C$	0.0008	0.0	0.8827	0.0048	0.0	0.731
$(Sc_{2/3}Nb_{1/3})_2C$	0.0028	0.0	0.4998	0.005	0.0	0.5507
$(Sc_{2/3}Ta_{1/3})_2C$	0.002	0.0	0.4267	0.0028	0.0	0.4363
$(Sc_{2/3}V_{1/3})_2C$	0.0	0.0	0.9322	0.0049	0.0	0.4447
$(Ta_{2/3}Fe_{1/3})_2C$	0.0237	0.0	1.0207	0.0249	0.0	1.0117
$(Ta_{2/3}Sc_{1/3})_2C$	0.0008	0.0	0.5032	0.0015	0.0	0.341
$(Ti_{2/3}Cr_{1/3})_2C$	0.001	0.0	0.2468	0.001	0.0	0.2323
$(Ti_{2/3}Mo_{1/3})_2C$	0.0019	0.0	0.2175	0.0022	0.0	0.2063
$(Ti_{2/3}Y_{1/3})_2C$	0.0039	0.0	0.7477	0.0002	0.0	0.2853
$(V_{2/3}Sc_{1/3})_2C$	0.0015	0.0	0.4797	0.0002	0.0	0.541
$(V_{2/3}Ti_{1/3})_2C$	0.0063	0.0	0.519	0.0019	0.0	0.4413
$(Zr_{2/3}Hf_{1/3})_2C$	0.0001	0.0	0.2242	0.0013	0.0	0.5593
$(Zr_{2/3}Mn_{1/3})_2C$	0.0026	0.0	0.7227	0.0041	0.0	0.714
$(Zr_{2/3}Y_{1/3})_2C$	0.0025	0.0	0.3045	0.002	0.0	0.666
$({\rm Hf}_{2/3}{\rm Fe}_{1/3})_2{\rm N}$	0.0321	0.0	1.0337	0.032	0.0	1.0477
$(Hf_{2/3}Sc_{1/3})_2N$	0.0065	0.0	0.4035	0.0009	0.0	0.6017
$(Ti_{2/3}Nb_{1/3})_2N$	0.0005	0.0	0.2492	0.0057	0.0	0.5223
$(Ti_{2/3}V_{1/3})_2N$	0.0011	0.0	0.2352	0.0	0.0	0.298
$(Zr_{2/3}Sc_{1/3})_2N$	0.0112	0.0	0.6917	0.0088	0.0	0.699
$({\rm Hf}_{2/3}{\rm Fe}_{1/3})_2{\rm C}$	0.0019	0.0	0.9	0.016	0.0	0.8797
$({\rm Hf}_{2/3}{\rm Mn}_{1/3})_{2}{\rm C}$	0.0068	0.0	0.525	0.0008	0.0	0.5257
$(Ti_{2/3}V_{1/3})_2C$	0.0053	0.0	0.722	0.0069	0.0	0.701

Table S4: The energy comparison for i-MXene with NM to FM spin configuration transition when the lattice is changed from hexagonal and rectangular.

commpound	NM	\mathbf{FM}	AFM-0	$\text{AFM-}\beta$	$\text{AFM-}\alpha$
$(Ti_{2/3}Ru_{1/3})_2C$	0.0007	0.0	0.0007	0.0007	0.0007
$(Zr_{2/3}Cu_{1/3})_2C$	0.0012	0.0	0.0012	0.0008	0.0012
$(Zr_{2/3}Ti_{1/3})_2N$	0.0015	0.0	0.0014	0.0016	0.0011

Table S5: Energy (in unit of eV/atom) compassion for i-MXene within various spin configurations in both rectangular (Rect.) and hexagonal (Hex.) lattice.

Compound	Structure	NM	FM	AFM-0	AFM-3 /AFM- β	AFM-2 /AFM-α	AFM-4	AFM-1		
$AFM \rightarrow FM$										
(Hfa (a Fet (a)) a C	Rect.	0.016	0.0107	0.0	0.0018	0.0045	0.015	0.015		
(112/31 01/3)20	Hex.	0.0105	0.0	0.0039	0.0021	0.0091	-	-		
(Hfa (a Mna (a)) a C	Rect.	0.0084	0.0084	0.0050	0.0079	0.0	0.0147	0.0215		
(112/3111/3)20	Hex.	0.0119	0.0055	0.0089	0.0	0.0046	-	-		
(Tia (aVt (a)aC	Rect.	0.0069	0.0022	0.0	0.0055	0.0038	0.0062	0.0009		
(112/3+1/3)20	Hex.	0.0042	0.0	0.002	0.0052	0.002	-	-		
$AFM \rightarrow AFM$										
(Nba /a Mn1 /a)aC	Rect.	0.0408	0.0109	0.0076	0.0043	0.0	0.0069	0.0121		
(1102/31111/3)20	Hex.	0.0361	0.0066	0.0031	0.0027	0.0	-	-		
(Nba (aSci (a)aC	Rect.	0.005	0.0033	0.0	0.0048	0.0043	0.0047	0.0043		
(2/31/3/2-	Hex.	0.0055	0.0031	0.0	0.0049	0.0054	-	-		
$(Sc_{0}/_{0}Cr_{1}/_{0})_{2}C$	Rect.	0.0182	0.0087	0.0	0.0036	0.0156	0.0172	0.017		
(2-2/3-1/3/2-	Hex.	0.0184	0.0118	0.0	0.0176	0.0039	-	-		
$(Sc_{2} (_{0}Mn_{1} (_{0}))_{2}C)$	Rect.	0.0079	0.0066	0.0016	0.0044	0.0011	0.0051	0.0		
(* 2/3 1/3/2	Hex.	0.0089	0.0078	0.0	0.0039	0.0037	-	-		
(Sca /a Mo1 /a) 2C	Rect.	0.0023	0.0015	0.0	0.0031	0.0027	0.003	0.0029		
(22/3.121/3)20	Hex.	0.0077	0.0029	0.0009	0.0027	0.0	-	-		
(Scalla Nhalla)aC	Rect	0.0126	0.0098	0.0073	0.0011	0.0061	0.0016	0.0		
(862/31101/3)20	Hex.	0.0147	0.0097	0.0084	0.0019	0.0	-	-		
(Scalla Tatila) 2C	Rect.	0.0054	0.0034	0.0	0.0014	0.004	0.0027	0.0025		
(862/3181/3)20	Hex.	0.0065	0.0037	0.0	0.0019	0.0025	-	-		
(Scalle Valle) aC	Rect.	0.0072	0.0072	0.0	0.0021	0.0031	0.024	0.0015		
(882/3+1/3)28	Hex.	0.0061	0.0012	0.0	0.0008	0.0005	-	-		
$({\rm Ta}_{2/3}{\rm Fe}_{1/3})_2{\rm C}$	Rect.	0.0278	0.0041	0.0	0.0147	0.0058	0.0099	0.022		
	Hex.	0.0286	0.0037	0.0	0.0103	0.0152	-	-		
$(Ta_{2} a_{2}Sc_{1} a_{2}) \circ C$	Rect.	0.0014	0.0006	0.0	0.0009	0.0009	0.0009	0.0009		
(22/3221/3/22	Hex.	0.0024	0.0009	0.0	0.0013	0.0013	-	-		
(Tip (aCr1 (a))aC	Rect.	0.0028	0.0018	0.0	0.0028	0.0024	0.0028	0.0021		
(2/31/3/2-	Hex.	0.0029	0.0019	0.0	0.0029	0.0028	-	-		
(Ti2/2M01/2)2C	Rect.	0.0022	0.0003	0.0	0.0021	0.002	0.0021	0.0018		
(2/31/3/2.)	Hex.	0.0029	0.0007	0.0	0.0025	0.0025	-	-		
$(Ti_{2} a Y_{1} a)_{2}C$	Rect.	0.0053	0.0014	0.0	0.0011	0.0013	0.0021	0.0027		
(2/3-1/3/2-	Hex.	0.0011	0.0009	0.0	0.0007	0.0009	-	-		
(Va/2Sc1/2)2C	Rect.	0.0051	0.0036	0.0	0.0034	0.0033	0.0036	0.0033		
(2/3-1/3/2-	Hex.	0.0045	0.0043	0.0	0.0044	0.0041	-	-		
(Va/2Ti1/2)2C	Rect.	0.0092	0.0029	0.0	0.0024	0.0026	0.0028	0.0027		
(2/3 1/3/2 -	Hex.	0.0032	0.0013	0.0	0.0031	0.0026	-	-		
$(Zr_{2/2}Hf_{1/2})_{2}C$	Rect.	0.0037	0.0036	0.0	0.0022	0.0016	0.0015	0.0008		
2/3 1/3/2	Hex.	0.0064	0.0051	0.0	0.0032	0.0036	-	-		
$(Zr_{2/2}Mn_{1/2})_{2}C$	Rect.	0.0132	0.0106	0.0087	0.0016	0.0032	0.002	0.0		
2/3 1/3/2	Hex.	0.0126	0.0085	0.0075	0.0003	0.0	-	-		
$(Zr_{2/2}Y_{1/2})_{2}C$	Rect.	0.0044	0.0019	0.0	0.0005	0.002	0.002	0.0009		
2/3 1/3/2	Hex.	0.0039	0.0019	0.0	0.0012	0.0008	-	-		
(Hfo/2Fe1/2)2N	Rect.	0.0411	0.009	0.0088	0.0241	0.0139	0.0109	0.0		
2/3 1/3/2	Hex.	0.0413	0.0093	0.0085	0.0	0.0233	-	-		
(Hf ₂ /2Sc ₁ /2)2N	Rect.	0.0104	0.0039	0.0007	0.0036	0.0006	0.0035	0.0		
2/3 1/3/2	Hex.	0.0041	0.0032	0.0	0.0031	0.0031	-	-		
(Ti _{2/2} Nb _{1/2}) ₂ N	Rect.	0.0025	0.002	0.0	0.0027	0.0024	0.0023	0.0024		
2/3 1/3/2	Hex.	0.0079	0.0022	0.0	0.0019	0.002	-	-		
(Ti _{2/3} V _{1/3}) ₂ N	Rect.	0.0027	0.0016	0.0	0.0025	0.0028	0.0026	0.0027		
2/3 1/3/2	Hex.	0.0029	0.0029	0.0	0.0029	0.0026	-	-		
$(Zr_{2/2}Sc_{1/2})_2N$	Rect.	0.0179	0.0067	0.0	0.0124	0.0087	0.011	0.0073		
· 2/3 1/3·2	Hex.	1 0.0164	0.0076	0.0	0.0111	0.012	-	-		

Table S5: Energy (in unit of eV/atom) compassion for i-MX ene within various spin configurations in both rectangular (Rect.) and hexagonal (Hex.) lattice. (continued)

Compound	Structure	NM	FM	AFM-0	AFM-3 /AFM-8	AFM-2 /AFM-0	AFM-4	AFM-1		
FM→ FM										
(Zra (aCor (a)aN	Rect.	0.0105	0.0011	0.0098	0.0099	0.0012	0.0	0.0012		
(212/3001/3)21	Hex.	0.0113	0.0012	0.0113	0.0	0.0105	-	-		
$(Zr_{2/3}Mn_{1/3})_2N$	Rect.	0.0438	0.0114	0.0268	0.0	0.0151	0.0106	0.0162		
	Bect.	0.0041	0.0002	0.0101	0.0024	0.0024	-	-		
$(2r_2/3Y_1/3)_2N$	Hex.	0.0039	0.0	0.0031	0.0026	0.0022	-	-		
(Zr _{2/2} Fe _{1/2}) ₂ N	Rect.	0.0451	0.011	0.0201	0.0264	0.0154	0.0	0.0177		
2/3 1/3/2	Hex.	0.0473	0.0094	0.0205	0.0	0.0278	-	-		
$({\rm Zr}_{2/3}{\rm Hf}_{1/3})_2{\rm N}$	Hex.	0.0053	0.0	0.00119	0.0023	0.0031	0.0037	-		
$(Hf \cup C_{T} \cup) - C$	Rect.	0.0034	0.0	0.0025	0.0036	0.0019	0.0017	0.0004		
$(111_2/3 C 1_1/3)_2 C$	Hex.	0.0034	0.0	0.0023	0.002	0.0034	-	-		
(Hf _{2/3} Hg _{1/3}) ₂ C	Rect.	0.0022	0.0	0.0007	0.0021	0.0012	0.0021	0.0012		
-/	Hex.	0.0005	0.004	0.0002	0.0005	0.0005	-	-		
$(Mo_{2/3}Cr_{1/3})_2C$	Hex.	0.0109	0.0	0.0068	0.0046	0.0006	-	-		
(Moo /o Fe1 /o)oC	Rect.	0.0452	0.0	0.0021	0.0163	0.0087	0.0003	0.0083		
(2/31/3/2-	Hex.	0.0442	0.0002	0.0027	0.0	0.0158	-	-		
$(Mo_{2/3}Mn_{1/3})_2C$	Rect.	0.0588	0.0	0.0077	0.021	0.0016	0.0021	0.0152		
(NIL C-) C	Rect.	0.0039	0.0	0.0039	0.0037	0.0017	0.001	0.0017		
$(ND_2/3CO_1/3)2C$	Hex.	0.0039	0.0	0.0039	0.0009	0.0036	-	-		
(Nb _{2/3} Fe _{1/3}) ₂ C	Rect.	0.0283	0.0	0.0024	0.012	0.0038	0.0059	0.0174		
2/0 1/0-	Hex. Bect	0.0288	0.0	0.0021	0.0061	0.0123	-	-		
$(Ta_{2/3}Co_{1/3})_2C$	Hex.	0.0058	0.0	0.0058	0.0003	0.0059	-	-		
(Tao / Mn 1 / o) 2C	Rect.	0.0362	0.0079	0.0084	0.0053	0.0	0.0113	0.0146		
2/3 1/3/2	Hex.	0.0304	0.0021	0.0026	0.0	0.0055	-	-		
$(Ti_{2/3}Nb_{1/3})_2C$	Hex.	0.0125	0.0	0.0012	0.0083	0.0083	-	-		
(Ti Pd) oC	Rect.	0.0041	0.0	0.0041	0.0041	0.0013	0.0012	0.0013		
(112/31 41/3)20	Hex.	0.0049	0.0	0.0049	0.0014	0.0049	-	-		
$(Ti_{2/3}Sc_{1/3})_2C$	Rect.	0.0093	0.0	0.0007	0.0093	0.0093	0.0093	0.0093		
(T: T-) C	Rect.	0.0112	0.0	0.0003	0.0059	0.0055	0.0061	0.004		
$(11_2/3 1a_1/3)_2$ C	Hex.	0.0134	0.0	0.0018	0.0071	0.0077	-	-		
(Ti _{2/3} Ti _{1/3}) ₂ C	Rect.	0.0278	0.0	0.0116	0.011	0.013	0.0087	0.0091		
-/	Rect.	0.0064	0.0	0.0052	0.028	0.0203	- 0.0024	-		
$(V_{2/3}Co_{1/3})_2C$	Hex.	0.0073	0.0	0.0063	0.0027	0.0073	-	-		
(V _{2/3} Fe _{1/3}) ₂ C	Rect.	0.0331	0.0	0.0039	0.0136	0.007	0.0088	0.0168		
2/0 1/0-	Hex.	0.0335	0.0	0.0042	0.0092	0.014	-	-		
$(V_{2/3}Mn_{1/3})_2C$	Hex.	0.031	0.0035	0.0068	0.0	0.0047	-	-		
(Va/2Rh1/2)2C	Rect.	0.0009	0.0	0.0009	0.0009	0.0009	0.0009	0.0009		
(2/3 1/3/2	Hex.	0.0005	0.0	0.0005	0.0005	0.0005	-	-		
$({\rm Zr}_{2/3}{\rm Cr}_{1/3})_2{\rm C}$	Hex.	0.0043	0.0	0.0028	0.0039	0.0033	0.0023	-		
$(\mathbf{Z}\mathbf{r}_{-} + \mathbf{E}\mathbf{e}_{+} + \mathbf{e}) \circ \mathbf{C}$	Rect.	0.0159	0.0049	0.0081	0.0035	0.0003	0.0	0.0074		
(212/3101/3)20	Hex.	0.0168	0.0039	0.0072	0.0	0.0041	-	-		
$(Zr_{2/3}Ni_{1/3})_2C$	Rect.	0.0037	0.0004	0.0037	0.0035	0.0014	0.0	0.0014		
	Rect.	0.0041	0.0009	0.0033	0.0052	0.0005	0.0013	- 0.0005		
$(H_{2/3}Co_{1/3})_{2N}$	Hex.	0.0059	0.0	0.0059	0.001	0.0058	-	-		
$(Hf_{2/3}Cr_{1/3})_2N$	Rect.	0.0078	0.0066	0.0078	0.0	0.0035	0.0074	0.0017		
-/	Hex. Bect	0.008	0.0064	0.0078	0.0091	0.0072	-	- 0.0073		
$(Hf_{2/3}Mn_{1/3})_2N$	Hex.	0.036	0.0	0.0271	0.0032	0.0055	-	-		
(Hf _{2/2} Zr _{1/2}) ₂ N	Rect.	0.0025	0.0	0.0035	0.0029	0.0041	0.0027	0.0015		
2/0 1/0/2	Hex. Bect	0.0031	0.0	0.0068	0.0031	0.0031	-	-		
$(1^{i_1}2/3^{Fe_1}/3)^2N$	Hex.	0.0405	0.0023	0.0153	0.0	0.0219	-	-		
(Ti _{2/2} Hf _{1/2}) ₂ N	Rect.	0.0035	0.0	0.0017	0.0016	0.0016	0.0018	0.0016		
2/3 1/3/2	Hex.	0.0043	0.0	0.0026	0.0028	0.0023	-	-		
$({\rm Ti}_{2/3}{\rm Mn}_{1/3})_2{\rm N}$	Hex.	0.0410	0.0	0.0239 0.0242	0.0101	0.008	-	-		
(Tio (aSci (a))2N	Rect.	0.0121	0.0	0.0004	0.0091	0.0085	0.0085	0.0085		
	Hex.	0.0121	0.0	0.0091	0.0085	0.0092	-	-		
$({\rm Ti}_{2/3}{\rm Ti}_{1/3})_2{\rm N}$	Hex.	0.0003	0.0	0.0003 0.0032	0.006	0.0098	-	-		
$(Ti_{-i}, V, \cdot) > N$	Rect.	0.002	0.0	0.0013	0.0012	0.0016	0.0015	0.0015		
`''2/3'1/3 ['] 2'	Hex.	0.0016	0.0	0.0012	0.0014	0.0012	-	-		

Table S6: The atomic magnetic moments for transition mental atoms M and M' in i-MXene $(M_{2/3}M'_{1/3})_2 X$ within both rectangular and hexagonal lattices. Rect. and Hex. represent the rectangular and hexagonal lattice, respectively. $M_M, M_{M'}$ and M_{tot} are the magnetic moment for M (in unit of μ_B) atom, M' atom (in unit of μ_B) and total magnetic moment (in unit of $\mu_B/f.u.$).

	Rect.			Hex.			
$(M_{2/3}M_{1/3}')_2X$	M_M	$M_{M'}$	M_{tot}	M_M	$M_{M'}$	M _{tot}	
$\rm NM \rightarrow FM$							
$(Ti_{2/3}Ru_{1/3})_2C$	0	0	0	0.166	0.104	0.290	
$(Zr_{2/3}Ti_{1/3})_2N$	0	0	0	0.470	0.54	0.950	
$(Zr_{2/3}Cu_{1/3})_2C$	0	0	0	0.225	0.0	0.30	
$FM \rightarrow FM$							
$({\rm Hf}_{2/3}{\rm Cr}_{1/3})_2{\rm C}$	-0.014	0.664	0.412	-0.005	0.69	0.429	
$({\rm Hf}_{2/3}{\rm Hg}_{1/3})_{2}{\rm C}$	0.185	0.021	0.257	0.258	0.031	0.344	
$(Mo_{2/3}Cr_{1/3})_2C$	0.039	1.305	0.884	0.009	1.282	0.842	
$(Mo_{2/3}Fe_{1/3})_2C$	-0.052	1.921	1.182	-0.046	1.905	1.173	
$(Mo_{2/3}Mn_{1/3})_2C$	-0.111	2.235	1.295	-0.101	2.247	1.318	
$(Nb_{2/3}Co_{1/3})_2C$	0.019	0.646	0.464	0.017	0.632	0.45	
$(Nb_{2/3}Fe_{1/3})_2C$	-0.121	1.791	1.04	-0.099	1.794	1.047	
$(Ta_{2/3}Co_{1/3})_2C$	-0.02	0.643	0.411	0.0	0.678	0.453	
$(Ta_{2/3}Mn_{1/3})_2C$	-0.199	1.593	0.78	-0.2	1.581	0.771	
$(Ti_{2/3}Nb_{1/3})_2C$	0.383	0.339	0.706	0.39	0.345	0.715	
$(Ti_{2/3}Pd_{1/3})_2C$	0.281	0.037	0.377	0.287	0.037	0.382	
$(Ti_{2/3}Sc_{1/3})_2C$	0.525	0.299	0.836	0.534	0.3	0.836	
$(Ti_{2/3}Ta_{1/3})_2C$	0.359	0.405	0.725	0.354	0.392	0.718	
$(Ti_{2/3}Ti_{1/3})_2C$	0.475	0.475	0.893	0.489	0.489	0.921	
$(V_{2/3}Co_{1/3})_2C$	0.118	0.742	0.638	0.129	0.746	0.65	
$(V_{2/3}Fe_{1/3})_2C$	-0.091	1.804	1.095	-0.059	1.814	1.127	
$(V_{2/3}Mn_{1/3})_2C$	-0.261	1.575	0.697	-0.253	1.575	0.705	
$(V_{2/3}Rh_{1/3})_2C$	0.217	0.051	0.303	0.13	0.031	0.303	
$(Zr_{2/3}Cr_{1/3})_2C$	-0.033	0.665	0.383	-0.026	0.729	0.425	
$(Zr_{2/3}Fe_{1/3})_2C$	-0.075	1.502	0.882	-0.047	1.515	0.917	
$(Zr_{2/3}Ni_{1/3})_2C$	0.224	0.106	0.361	0.204	0.098	0.336	
$({\rm Hf}_{2/3}{\rm Co}_{1/3})_2{\rm N}$	0.107	0.322	0.346	0.086	0.398	0.364	
$(Hf_{2/3}Cr_{1/3})_2N$	0.091	-0.582	-0.267	-0.117	0.763	0.356	
$(Hf_{2/3}Mn_{1/3})_2N$	-0.371	1.84	0.744	-0.391	1.791	0.686	
$(Hf_{2/3}Zr_{1/3})_2N$	0.302	0.242	0.564	0.3	0.244	0.555	
$(Ti_{2/3}Fe_{1/3})_2N$	-0.162	1.937	1.113	-0.166	1.932	1.102	
$(Ti_{2/3}Hf_{1/3})_2N$	0.316	0.248	0.571	0.318	0.249	0.578	
$(Ti_{2/3}Mn_{1/3})_2N$	-0.352	1.862	0.804	-0.355	1.869	0.809	
$(Ti_{2/3}Sc_{1/3})_2N$	0.359	0.228	0.599	0.335	0.221	0.575	
(Ti _{2/3} Ti _{1/3}) ₂ N	0.306	0.52	0.579	0.301	0.301	0.575	
$(Ti_{2/3}Y_{1/3})_2N$	0.237	0.142	0.397	0.219	0.135	0.378	
$(Zr_{2/3}Co_{1/3})_2N$	0.034	-0.737	-0.459	0.029	-0.753	-0.469	
$(Zr_{2/3}Fe_{1/3})_2N$	-0.063	1.959	1.235	-0.042	1.977	1.266	
$(Zr_{2/3}Hf_{1/3})_2N$	0.254	0.295	0.526	0.251	0.296	0.53	
$(Zr_{2/3}Mn_{1/3})_2N$	-0.088	1.782	1.064	-0.105	1.808	1.07	
$(Zr_{2/3}Y_{1/3})_2N$	0.226	0.169	0.4	0.225	0.176	0.421	

Table S7: The atomic magnetic moments for transition mental atoms M and M' in i-MXene $(M_{2/3}M'_{1/3})_2X$ within both rectangular and hexagonal lattices. Rect. and Hex. represent the rectangular and hexagonal lattice, respectively. The magnetic moment is in unit of μ_B /atom. \uparrow and \downarrow denote the up and down layer transition atom, respectively.

(M, M'), Y	Rect.				Hex.			
$(m_2/3m_{1/3})_2\Lambda$	$M_{M\uparrow}$	$M_{M\downarrow}$	$M_{M'\uparrow}$	$M_{M'\downarrow}$	$M_{M\uparrow}$	$M_{M\downarrow}$	$M_{M'\uparrow}$	$M_{M'\downarrow}$
AFM→AFM								
$(Nb_{2/3}Mn_{1/3})_2C$	0.183	-0.183	1.555	-1.555	0.061	-0.061	1.807	-1.807
$(Nb_{2/3}Sc_{1/3})_2C$	0.251	-0.251	0.17	-0.17	0.263	-0.263	0.195	-0.195
$(Sc_{2/3}Cr_{1/3})_2C$	0.239	-0.239	1.241	-1.241	0.077	-0.077	1.409	-1.409
$(Sc_{2/3}Mn_{1/3})_2C$	0.145	-0.145	0.673	-0.673	0.028	-0.028	1.326	-1.326
$(Sc_{2/3}Mo_{1/3})_2C$	0.347	-0.347	0.624	-0.624	0.104	-0.104	0.449	-0.449
$(Sc_{2/3}Nb_{1/3})_2C$	0.205	-0.205	0.388	-0.388	0.185	-0.185	0.343	-0.343
$(Sc_{2/3}Ta_{1/3})_2C$	0.157	-0.157	0.357	-0.357	0.172	-0.172	0.349	-0.349
$(Sc_{2/3}V_{1/3})_2C$	0.298	-0.298	0.865	-0.865	0.148	-0.148	0.5	-0.5
$(Ta_{2/3}Fe_{1/3})_2C$	0.154	-0.154	1.816	-1.816	0.079	-0.079	1.723	-1.723
$(Ta_{2/3}Sc_{1/3})_2C$	0.297	-0.297	0.179	-0.179	0.269	-0.269	0.173	-0.173
$(Ti_{2/3}Cr_{1/3})_2C$	0.103	-0.103	0.166	-0.166	0.175	-0.175	0.438	-0.438
$(Ti_{2/3}Mo_{1/3})_2C$	0.132	-0.132	0.054	-0.054	0.181	-0.181	0.083	-0.083
$(Ti_{2/3}Y_{1/3})_2C$	0.46	-0.46	0.28	-0.28	0.202	-0.202	0.125	-0.125
$(V_{2/3}Sc_{1/3})_2C$	0.327	-0.327	0.119	-0.119	0.319	-0.319	0.126	-0.126
$(V_{2/3}Ti_{1/3})_2C$	0.282	-0.282	0.24	-0.24	0.335	-0.335	0.173	-0.173
$(Zr_{2/3}Hf_{1/3})_2C$	0.104	-0.104	0.134	-0.134	0.246	-0.246	0.289	-0.289
$(Zr_{2/3}Mn_{1/3})_2C$	0.016	-0.016	1.167	-1.167	0.117	-0.117	1.052	-1.052
$(Zr_{2/3}Y_{1/3})_2C$	0.183	-0.183	0.118	-0.118	0.221	-0.221	0.155	-0.155
$({\rm Hf}_{2/3}{\rm Fe}_{1/3})_2{\rm N}$	0.206	-0.206	1.936	-1.936	0.232	-0.232	1.934	-1.934
$({\rm Hf}_{2/3}{\rm Sc}_{1/3})_2{\rm N}$	0.236	-0.236	0.142	-0.142	0.319	-0.319	0.199	-0.199
$(Ti_{2/3}Nb_{1/3})_2N$	0.115	-0.115	0.156	-0.156	0.152	-0.152	0.246	-0.246
$(Ti_{2/3}V_{1/3})_2N$	0.129	-0.129	0.108	-0.108	0.167	-0.167	0.299	-0.299
$(Zr_{2/3}Sc_{1/3})_2N$	0.377	-0.377	0.3	-0.3	0.487	-0.487	0.357	-0.357
$AFM \rightarrow FM$								
$(M_{2} \downarrow M'_{2}) \circ X$	Rect.				Hex.			
$(m_2/3m_1/3)2M$	$M_{M\uparrow}$	$M_{M\downarrow}$	$M_{M'\uparrow}$	$M_{M'\downarrow}$	M_M	$\mathcal{M}_{M'}$	M_{tot}	
$({\rm Hf}_{2/3}{\rm Fe}_{1/3})_2{\rm C}$	0.087	-0.087	1.04	-1.04	-0.137	1.623	0.899	
$({\rm Hf}_{2/3}{\rm Mn}_{1/3})_2{\rm C}$	0.128	-0.128	0.919	-0.919	-0.125	1.089	0.559	
$(Ti_{2/3}V_{1/3})_2C$	0.367	-0.367	0.698	-0.698	0.314	0.454	0.721	

S9 band structures

S9.1 magnetic i-MXene

 \sim

-0.25

-0.50

-0.75

-1.00

M

ĸ

-0.50

-0.75

-1.00 -

м

ĸ

0.25

0.00

-0.25

-0.50

-0.75

-1.00

M

ĸ

Energy (eV)

