Supporting Information

Unlocking the Catalytic Activity of an Eight-atom Gold Cluster with a Pd Atom

Jiayu Xu,¹ Shun Xu,¹ Mingyang Chen,^{2,3*} and Yan Zhu^{1,*}

¹School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

²Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

³Beijing Computational Science Research Center, Beijing 100193, China

Supporting Figures and Tables

Figure S1. UV-vis spectra of (A) fresh Au_8Pd and Au_9 ; (B) fresh $Au_{24}Pd$ and Au_{25} clusters.

Figure S2. UV-vis spectrum of the spent Au_8Pd solved in CH_2Cl_2 .

Figure S3. TEM images of the Au_8Pd/SiO_2 catalysts (A) before reaction and (B) after reaction.

Figure S4. IR spectra of the Au₈Pd catalyst before reaction and after reaction.

Figure S5. Depassivation of (A) $[Au_8Pd(PPh_3)_4(PH_3)_4]^{2+}$ and (B) $[Au_8Pd(PPh_3)_4(PH_3)_4]^{2+}$ by the removal of one PPh₃. All of the species are ground state singlets. Color code: orange = Au, dark-cyan = Pd, red = O, black = C, pink = P, and grey = H.

Figure S6. Adsorption of (A) benzyl alcohol over $[Au_8Pd(PPh_3)_3(PH_3)_4]^{2+}$, (B) O₂ over $[Au_8Pd(PPh_3)_3(PH_3)_4]^{2+}$, and (C) O₂ over $[Au_9(PPh_3)_3(PH_3)_4]^{3+}$. All of the species are ground state singlets unless otherwise indicated. Triplet ground states are indicated by '(3)'. Color code: orange = Au, dark-cyan = Pd, red = O, black = C, pink = P, and grey = H. Adsorption enthalpies are in kcal/mol.

Table S1. Predicted deprotonation energies for relevant species in the benzyl alcohol oxidation reactions with O_2 catalyzed by Au_8Pd at the PBE/LANL2DZ level. All ground-state species are singlet unless otherwise noted ('(3)' for triplet).

Reactant	Product	Deprotonation
		Energy
		kcal/mol
PhCH ₃	PhCH ₂ ⁻	383.3
PhCH ₂ OH	PhCH ₂ O ⁻	366.9
$[Au(PhCH_2OH) Pd(O_2)]^{2+}(3)$	$[Au(PhCH_2O) Pd(O_2)]^+ (3)$	231.8
$[Au(PhCH_2O) Pd(OOH)]^{2+}$	[Au(PhCHO) Pd(OOH)] ⁺	209.4
$[Au(PhCH_2OH) PdO]^{2+}(3)$	$[Au(PhCH2O) PdO]^+ (3)$	234.3
[Au(PhCH ₂ O) PdOH] ²⁺	[Au(PhCHO) PdOH] ²⁺	205.9

Table S2. Predicted proton affinities for relevant species in the benzyl alcohol oxidation reactions catalyzed by Au_8Pd at the PBE/LANL2DZ level. All ground-state species are singlet unless otherwise noted ('(3)' for triplet).

Reactant	Product	Proton affinity
		kcal/mol
O ₂ (3)	$O_2H^+(3)$	96.9
CO ₃ ^{2–}	HCO ₃ -	493.3
HCO ₃ -	H ₂ CO ₃	331.7
$[Au(PhCH_2O) Pd(O_2)]^+ (3)$	$[Au(PhCH_2O) Pd(OOH)]^{2+}$	218.0
[Au(PhCHO) Pd(OOH)] ⁺	$[Au(PhCHO) PdO]^{2+}(3) +$	232.4
	H ₂ O	
$[Au(PhCH2O) PdO]^+ (3)$	$[Au(PhCH_2O) PdOH]^{2+}(3)$	247.2
[Au(PhCHO) PdOH] ⁺	$[Au(PhCHO) Pd]^{2+} + H_2O$	205.9