Agaric-derived N-doped carbon nanorod arrays@nanosheet networks coupled with molybdenum carbide nanoparticles as highly efficient pH-universal hydrogen evolution electrocatalysts

Qiao ling Kang,^a Meng yuan Li,^a Zeng rui Wang,^b Qing yi Lu^{*a}, Feng Gao^{*b}

^a State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. E-mail: qylu@nju.edu.cn

^b Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China. E-mail: fgao@nju.edu.cn

Figure S1 The comparative digital photographs at different stages of the synthesis process of

Mo₂C@N-CANs electrocatalysts from natural agaric.

Figure S2 SEM images of Mo₂C@N-CANs prepared with different drying processes (a, b) 60 °C

drying and (c, d) freeze drying

Figure S3 (a) N_2 adsorption-desorption isotherms and (b) pore volume of $Mo_2C@N-CANs$

prepared with freeze drying and 60 °C drying

Figure S4 (a) Polarization curves and (b) Tafel curves of Mo₂C@N-CANs prepared with freeze drying and 60 °C drying.

Figure S5 (a) Schematic diagram of the apparatus, (b) Temperature programs for the synthesis of Mo₂C@N-CANselectrocatalysts, (c) XRD patterns of the samples obtained at different pyrolytic temperature and (d) Polarization curves of the samples obtained at different pyrolytic temperature.

Figure S6 (a) XRD patterns and (b) Polarization curves of the $Mo_2C@N-CANs$ samples obtained with different concentrations of $(NH_4)_6Mo_7O_{24}$ solution.

Figure S7 Raman spectra of the Mo₂C@N-CANs sample and commercial Mo₂C powders.

Figure S8 XPS spectra of $Mo_2C@N$ -CANs electrocatalyst: (a) Survey XPS spectrum; and (b~d)

High-resolution XPS spectra of (b) N 1s; (c) C 1s and (d) Mo 3d.

Figure S9 XRD patterns of the different electrocatalysts.

Figure S10 (a) Overpotentials at 10 mA·cm⁻² and (b) Calculated exchange current density in 1 M KOH of Mo₂C@N-CANs, CANs, N-CANs, Mo₂C@CANs, com-Mo₂C and 20 wt% Pt/C catalysts.

Figure S11 CV curves for (a) Pt/C, (b) CANs, (c) N-CANs, (d) com-Mo₂C, (e) Mo₂C@CANs and

(f) Mo₂C@N-CANs electrocatalysts at different scan rates

Figure S12 (a) TEM image (b) HRTEM image, (c) XPS spectrum and (d) XRD pattern of Mo₂C@N-CANs electrocatalyst after 3000 CV cycles in 1M KOH solution.

Figure S13 (a) Enlarged digital image of the home-made water-splitting system; (b) Digital image of Ni foam loading nothing (left), Mo₂C@N-CANs (middle), and IrO₂ (right).

Figure S14 The theoretical models used in DFT calculations and the adopted adsorption sites of

H* on the surface of these models: (a) CANs, (b) N-CANs, (c) Mo₂C, (d) Mo₂C@CANs, (e)

Mo₂C@N-CANs

Ş	Sample	$S_{BET}(m^2 \cdot g^{-1})$	Pore volum	e (cm ³ ·g ⁻¹)	Pore size (nn	
Mo ₂ (free	C@N-CANs eze drying)	239.73	0.25	514	3.93	
Mo ₂ (60	C@N-CANs °C drying)	43.96	43.96 0.0221		2.00	
	Table S	2 ICP result of th	e Mo ₂ C@N-C.	ANs samples		
_	Sample	Mo (m	ng/L) The load of Mo ₂ C calculated on the N-CANs		Mo ₂ C e N-CANs	
	Mo ₂ C@N-CAN	ls 557	7	50.8%		

Table S1 BET surface area, pore volume and pore size of the different samples

The method of ICP test: 0.035g of Mo₂C@N-CANs was dissolved in 3 mL of aqua regia under sonication for 30 min. Then, the solution was diluted to 30 mL and centrifugated under 8000 rmp. The supernatant was used for ICP test. The load of Mo₂C on N-CANs could be calculated by the measured concentration of Mo element by the following formula:

The load of Mo₂C on N-CANs = $(C_{M_0} \times 30) / (Mr_{M_0/M_{0^2c}}/Mr_{M_{0^2c}})/35 \times 100\%$

where C_{Mo} is the concentration of Mo tested by ICP, 30 is the total volume of the solution, $Mr_{Mo/Mo2c}$ is the relative molecular weight of Mo in Mo₂C, which is 191.88, Mr_{Mo2c} is the relative molecular weight of Mo₂C molecular, which is 203.88 and 35 mg is the total quality of the weighed Mo₂C@N-CANs.

$(NH_4)_6Mo_7O_{24}$ solution.						
Samples	C (At%)	N (At%)	Mo (At%)			
0 mM	100		—			
3.5 mM	94.14	1.93	4.93			
7 mM	77.74	12.01	10.25			
28 mM	81.14	8.07	10.79			
56 mM	72.94	13.98	13.08			
Staurated	74.52	8.71	16.77			

Table S3 EDS analysis of Mo $_2C@N\text{-}CANs$ samples obtained at different concentrations of

 Table S4 EDS analysis of different samples.

Samples	C (At%)	N (At%)	Mo (At%)
CANs	99.65	0.35	—
N-CANs	81.27	18.73	_
Mo ₂ C@CANs	85.87	0.58	13.55
Mo ₂ C@N-CANs	74.52	8.71	16.77

Table S5 BET surface area, pore volume and pore size of the different samples

Sample	$S_{BET}(m^2 \cdot g^{-1})$	Pore volume (cm ³ ·g ⁻¹)	Pore size (nm)
CANs	532.6538	0.337953	2.53788
N-CANs	1145.8126	0.582090	2.03206
Com-Mo ₂ C	1.9651	0.002419	4.92487
Mo ₂ C@CANs	145.3180	0.156030	2.95665
Mo ₂ C@N-CANs	239.7328	0.251360	3.93131

	Loading density (mg·cm ⁻²)	Current density (j)	Overpotential at the corresponding j	Reference
Mo ₂ C@N-CANs	0.357	10 mA/cm²	100 mV	This work
Mo ₂ C@N-CNFs	0.255	10 mA/cm ²	168 mV	NPG Asia Mater. 2016 , 8, e288.
Mo ₂ C@NPC	0.14	10 mA/cm ²	260 mV	Nat. Commun. 2016 , 7, 11204.
porous MoC _x nano- octahedrons	0.8	10 mA/cm ²	151 mV	Nat. Commun. 2015 , 6, 6512
β-Mo ₂ C Nanotubes	0.213	10 mA/cm ²	112 mV (0.1 M KOH)	Angew. Chem. Int. Ed. 2015 , 54, 15395
Mo ₂ C nanoparticles	0.102	10 mA/cm ²	176 mV	J. Mater. Chem. A 2015, 3, 8361
Mo ₂ C nanocrystal embedded N-CNTs	3	10 mA/cm ²	257 mV	J. Mater. Chem. A 2015, 3, 5783
MoP	0.86	10 mA/cm ²	140 mV	Energy Environ. Sci. 2014 , 7, 2624
MoC _{0.654} @CNS nanosheet		10 mA/cm ²	220 mV (0.1 M KOH)	J. Am. Chem. Soc. 2015, 137, 16, 5480
BCF/Mo ₂ C	1.41	20 mA/cm ²	115 mV	ACS Appl. Mater. Interfaces .2017 , 9, 22604
Mo ₂ C/C Nanosheet	0.28	10 mA/cm ²	125 mV	ACS Appl. Mater. Interfaces. 2017 , 9, 41314
Mo ₂ C/C	1.02	10 mA/cm ²	140mV	Small 2017, 13, 1701246.
Mo ₂ C/KB	0.213	10 mA/cm ²	210 mV	ACS Sustain. Chem. Eng. 2018 , 6, 983
Mo ₂ C/C	0.213	10 mA/cm ²	218 mV	ACS Sustain. Chem. Eng. 2018, 6, 13995
Ni impregnated Mo ₂ C nano-rod		10 mA/cm ²	130mV	Appl. Catal. B: Environ. 2014 , 154- 155, 232.

 Table S6 Comparison of the electrocatalytic activity of Mo₂C@N-CANs with the Mo₂C based solid-state catalysts reported recently for HER in 1 M KOH electrolyte.

	Loading density	Current	Overpotential at the	Reference	
	(mg/cm ²)	density (j)	corresponding j	Reference	
MosC@N-CANs	0 357	10	82mV (0.5 M H ₂ SO ₄)	This work	
Moze with CAIls	0.557	mA/cm ²	359 mV (0.1M PBS)	T IIIS WOLK	
N-Doped Mo ₂ C	0 357	10	99 mV	ACS Nano .2017, 11,	
Nanosheets	0.557	mA/cm ²	$0.5M H_2SO_4$	12509	
		10	190 mV	ACS Appl. Mater.	
Mo ₂ C/C Nanosheet	0.28	10 m Λ/am^2		Interfaces. 2017, 9,	
		IIIA/CIII ²	$0.5 \text{M} \text{H}_2 \text{S} \text{O}_4$	41314	
$M_{c} C/C$	1.02	10	175mV	Small 2017, 13,	
1V102C/C	1.02	mA/cm ²	$0.5M H_2SO_4$	1701246.	
Mo ₂ C/Carbon	0.60	10	140 mV	Langmuir 2018 , 34,	
Hybrid Nanotubes	0.69	mA/cm ²	0.5M H ₂ SO ₄	10924.	
	0.010	10	180 mV	ACS Sustain. Chem.	
M0 ₂ C/KB	0.213	mA/cm ²	0.5M H ₂ SO ₄	Eng. 2018, 6, 983.	
	0.010	10	210 mV	Carbon 2018, 139,	
NP-Mo ₂ C	0.213	mA/cm ²	0.5M H ₂ SO ₄	845.	
		10	233 mV	ACS Sustain. Chem.	
Mo_2C/C	0.213	mA/cm ²	0.5M H ₂ SO ₄	Eng. 2018, 6, 13995.	
β-Mo ₂ C		10	172 mV	Angew. Chem. Int. Ed.	
Nanotubes	0.213	mA/cm ²	0.5M H ₂ SO ₄	2015 , <i>54</i> ,15395	
	2.2	10	117mV	ACS Nano 2017, 11,	
Mo _x C-IOL		mA/cm ²	$0.5M H_2SO_4$	7527.	
		10	229mV	Adv. Sci. 2018, 5,	
np-Mo ₂ C	No-reported	mA/cm ²	0.5M H ₂ SO ₄	1700601	
	0.4	10	140	J. Am. Chem. Soc.	
PDAP-MoCN-CO ₂	(pH=1)	mA/cm ²	0.5M H ₂ SO ₄	2015 , <i>137</i> , 110	
	0.7	10	220mV	Angew. Chem. Int. Ed.	
β-Mo _{0.06} W _{0.94} C/CB	0.7	mA/cm ²	0.5M H ₂ SO ₄	2014 , <i>53</i> , 5131	
		10	210mV	Angew. Chem. Int. Ed.	
Mo ₂ C	1.4	mA/cm ²	(1 M H ₂ SO ₄)	2012 , <i>51</i> , 12703	
porous MoC _x nano-	0.0	10	142	Nat. Commun. 2015,	
octahedrons	0.8	mA/cm ²	0.5M H ₂ SO ₄	6,6512	
Mo ₂ C Nanoparticles	0.04	10	210 mV	J. Mater. Chem. A	
Decorated Graphitic	0.36	mA/cm ²	0.5M H ₂ SO ₄	2014 , <i>2</i> , 18715	
			167mV		
Mo ₂ C@N-CNFs	0.255	10 mA/cm ²	(0.5M H ₂ SO ₄)	NPG Asia Mater.	
- 0			431mV (0.1M PBS)	2016 , <i>8</i> , e288.	
N-doped Mo ₂ C		10	645 mV	J. Mater. Chem. A	
carbon nanotubes	3	mA/cm ²	(0.1M PBS)	2015 , <i>3</i> , 5783.	
			200 mV	Angew. Chem. Int. Ed.	
Mo ₂ C	1.4	1 mA/cm ²	(0.1M PBS)	2012 , <i>51</i> , 12703.	

Table S7 Comparison of the electrocatalytic activity of $Mo_2C@N$ -CANs with the Mo_2C based solid-state catalysts reported recently for HER in 0.5 M H₂SO₄ and in 0.1 M PBS electrolyte.

The second					
Models	a (Å)	b (Å)	c (Å)		
Graphene	22.17619	22.17619	37.74370		
N-doped Graphene	22.20219	22.18377	37.74379		
Mo ₂ C(102)	21.61710	21.06020	37.74370		
Mo ₂ C(102)@Graphene	21.61710	21.06020	37.74370		
Mo ₂ C(102)@N-doped Graphene	21.61710	21.06020	37.74370		

Table S8 The lattice parameters (Å) of the supercells for all the systems

Table S9 The ΔE (H*), E_{ZPE} (H*), ΔE_{ZPE} and ΔG (H*) values of the H* adsorbed on the given surfaces.

50110005.							
Models	Adsorption Site	$\Delta E_{\mathrm{H}^*}(\mathrm{eV})$	<i>E</i> _{ZPE} (H*) (eV)	$\Delta E_{\rm ZPE}$ (eV)	$\Delta G(\mathrm{H}^*)$ (eV)		
C Graphene		0.9055	0.2985	0.0191	0.6568		
N-doped Graphene		0.4310	0.3145	0.0351	0.1978		
Mo ₂ C(102)		-0.7498	0.2492	-0.0301	-1.1233		
Mo ₂ C(102)@ Graphene		0.5856	0.3053	0.0260	0.2739		
Mo ₂ C(102)@ N-doped Graphene	C1	0.3136	0.3163	0.0370	0.0132		
	C2	1.2802	0.3431	0.0637	1.0068		
	C3	0.4789	0.3043	0.0249	0.1661		
	C4	0.3305	0.3124	0.0031	0.0261		