Supporting Information

Fe doped Ni₅P₄ nanosheet arrays with rich P vacancies via phase transformation

for efficient overall water splitting

Junlei Qi,¹ Tianxiong Xu, ¹ Jian Cao^{*},¹ Shu Guo^{*},² Zhengxiang Zhong^{*},³ Jicai Feng¹

1. Experimental Section

Fabrication of NiFe-LDH nanosheets: Firstly, we heated the carbon paper (CP) to 500 °C for 2 h in a muffle furnace. Then, we dissolved 0.87 g Ni(NO₃)₂ $6H_2O$, 0.135 g Fe(NO₃)₃ 9H₂O, 0.33 g NH₃F and 0.9 g urea into 60 mL deionized water. After that, we put a piece of clean carbon paper into a 100 mL Teflon-lined stainless steel autoclave with the prepared solution, and heated the steel autoclave to 120 °C for 6 h. Finally, we washed the obtained carbon papers with NiFe-LDH nanosheet arrays by deionized water and ethanol for several time, and dried them at 60 °C overnight.

*Fabrication of NiSe*₂/*Fe nanosheets:* We heated the obtained NiFe-LDH nanosheets to 450 °C in a tube furnace under flowing Ar of 50 sccm, with 0.5g Se at 400 °C in the upsteam, and maintained that for 1 h.

Fabrication of D-Ni₅P₄/*Fe nanosheets:* The D-Ni₅P₄|Fe-2, 2.5, 3, 3.5 samples were obtained in the following way. We heated the obtained NiSe₂|Fe nanosheets to 400 °C in a tube furnace under flowing Ar, with 0.5g NaH₂PO₂ H₂O in the upsteam as phosphorus source, and maintained that for different time (2 h, 2.5 h, 3 h, 3.5 h). The obtained samples were denoted as D-Ni₅P₄|Fe-2, 2.5, 3, 3.5 according to the corresponding time. The optimal sample was D-Ni₅P₄|Fe-3, shortly denoted as D-Ni₅P₄|Fe.

*Fabrication of Ni*₅ P_4 /*Fe nanosheets:* We obtained the Ni₅ P_4 |Fe nanosheets in the same way of fabricating D-Ni₅ P_4 |Fe by using NiFe-LDH as substitute.

2. Sample characterization

We use transmission electron microscope (TEM, Tecnai G2 F30), scanning electronic microscopy (SEM, Helios Nanolab 600i), X-ray photoelectron spectroscopy (XPS, Thermo Fisher) and X-ray diffraction (XRD, D8 Advance) to characterized the obtained samples.

3. Electrochemical measurements

All electrochemical performances were measured in the electrochemical workstation (CHI 760E). The HER and OER properties were measured in a three-electrode system. The obtained samples, carbon rod and Hg/HgO were used as working electrode, counter electrode and reference electrode, respectively. All the potential was converted to reversible hydrogen electrode. The scanning rate of polarization curves is 2 mV s⁻¹, and then we compensated the polarization curves with iR-correction. Before tests, all samples were cycled at 10 mV s⁻¹ until the stability of cyclic voltammetry (CV), then the data were collected. As a comparison, commercial Pt/C (20 wt% Pt) and IrO₂ were prepared on carbon paper, and the detailed process was referred to previous reseaches.^[1, 2] After all the measurement, the calculation of Tafel slope was conducted in the following way. Firstly, for both HER and OER, the potential at 10 mA cm⁻² was read, shortly denoted as E₁₀. Next, an interval of about 0.04 V was selected around the E_{10} to obtain the optimal linear relationship between Log j and E (j represents the current density and E represents the potential vs. RHE). Finally, the fitting slopes of samples were compared. Besides, we normalized the current density by using the ECSA value (j_{ECSA}=j/ECSA). The calculation formula of ECSA is as follows:

A specific capacitance (C_s) value of 0.040 mF/cm² in 1 M KOH was adopted. C_{dlsample} and C_{dlCP} refer to the the geometric double layer capacitance (C_{dl}) of sample and carbon paper.

Reference

1. Y. Chen, Z. Ren, H. Fu, X. Zhang, G. Tian, H. Fu, Small 2018, 14, 1800763.

2. X. Xiao, D. Huang, Y. Fu, M. Wen, X. Jiang, X. Lv, M. Li, L. Gao, S. Liu, M.

Wang, C. Zhao, Y. Shen, ACS Appl. Mater. Interfaces 2018, 10, 4689-4696.

Fig. S1 SEM images of (a) D-Ni₅P₄|Fe-2, (b) D-Ni₅P₄|Fe-2.5, (c) D-Ni₅P₄|Fe-3 and (d)

 $D-Ni_5P_4|Fe-3.5.$

Fig. S2 XRD patterns of (a) NiFe-LDH and (b) NiSe₂|Fe.

Fig. S3 (a) HER and (b) OER performances of D-Ni₅P₄|Fe-2, 2.5, 3, 3.5.

Fig. S4 SEM images of D-Ni₅P₄|Fe after long time HER test.

Fig. S5 XPS (a) Ni 2p, (b) Fe 2p, (c) O 1s, (d) P 2p and (e) Se 3d spectra of

D-Ni₅P₄|Fe after long time OER test.

Fig. S6 CV curves of obtained samples for estimating the C_{dl} in HER tests..

Fig. S7 CV curves of obtained samples for estimating the C_{dl} in OER tests.

Fig. S8 LSV curves normalized by C_{dl} of obtained samples.

Table S1 Comparison of HER performances for D-Ni₅P₄|Fe nanosheets with

Electrocatalyst	Substrate	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Ref.
D-Ni5P4 Fe	Carbon paper	95 at 10 mA cm ⁻²	91.0	This work
NiMoN	Carbon cloth	109 at 10 mA cm ⁻²	95	Adv. Energy Mater. 2016, 11 , 1600221.
N-Ni ₃ S ₂ /VS ₂	Ni foam	151 at 10 mA cm ⁻²	107.5	<i>Electrochim. Acta</i> 2018, 269 , 55
Co-Ni ₃ N	Carbon cloth	194 at 10 mA cm ⁻²	156	<i>Adv. Mater.</i> 2018, 13 , 1705516
Fe17.5%-Ni3S2	Ni foam	142, 232 at 20, 100 mA cm ⁻²	95	ACS Catal. 2018, 8 , 5431
(Ni0.33Fe0.67)2P	Ni foam	214 at 50 mA cm ⁻²	73.2	Adv. Funct. Mater. 2017, 37 , 1702513
NiMoP ₂	Carbon cloth	199 at 10 mA cm ⁻²	112	J. Mater. Chem. A 2017, 5 , 7197
NiCoP nanocone	Ni foam	104 at 10 mA cm ⁻²	54	J. Mater. Chem. A 2017, 5 , 14828
Ni-Co-P hollow nanobricks	Powder	107 at 10 mA cm ⁻²	46	Energy Environ. Sci. 2018, 11 , 872
Ni _{1.85} Fe _{0.15} P NSAs/NF	Ni foam	106 at 10 mA cm ⁻²	89.7	ACS Appl. Mater. Inter 2017, 9 , 26001
CoSe film	Ti mesh	121 at 10 mA cm ⁻²	84	<i>Chem. Commun.</i> 2015, 51 , 16683
TiO2@Co9S8 core-branch arrays	Ni foam	139 at 10 mA cm ⁻²	65	Adv. Sci. 2018, 5 , 1700772
NiFe LDH@NiCoP	Ni foam	120 at 10 mA cm ⁻²	88.2	<i>Adv. Funct. Mater.</i> 2018, 28 , 1706847.

previsoulsy reported electrocatalysts in the alkaline media.

1. If not metioned specifically, all overpotentials were corrected with iR compensation. 2. If not metioned specifically, all electrocatalysts are directly synthesized on conductive substrates.

Table S2 Comparison of OER performances for D-Ni₅P₄|Fe nanosheets with

Electrocatalyst	Substrate	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Ref.
D-Ni5P4 Fe	Carbon paper	217 at 10 mA cm ⁻²	45.7	This work
Ni ₃ S ₂ /VS ₂	Ni foam	227 at 10 mA cm ⁻²	59.9	<i>Electrochim. Acta</i> 2018, 269 , 55
CoS ₂ nanotube	Carbon cloth	276 at 10 mA cm ⁻²	81	Nanoscale Horiz. 2017, 2 , 342
Hyperbranched NiCoP Arrays	Ni foam	268 at 10 mA cm ⁻²	75	ACS Appl. Mater. Inter 2018, 10 , 41237
Co ₉ S ₈ /Ni ₃ S ₂	Ni foam	227 at 10 mA cm ⁻²	46.5	Appl. Catal. B-Environ. 2019, 253 , 246
CoP ₂ /RGO	Glass carbon electrodes	300 at 10 mA cm ⁻²	96	J. Mater. Chem. A 2016, 4 , 4686-4690
N-NiMoO4/NiS2	Carbon cloth	267, 335 at 10, 100 mA cm ⁻²	44.3	<i>Adv. Funct. Mater.</i> 2019, 29 , 1805298
Co5Mo1.0O nanosheets	Ni foam	270 at 10 mA cm ⁻²	54.4	Nano Energy 2018, 45 , 448
Co-Ni ₃ N	Carbon cloth	307 at 10 mA cm ⁻²	57	<i>Adv. Mater.</i> 2018, 13 , 1705516
plasma-assisted synthesized NiCoP	Ni foam	280 at 10 mA cm ⁻²	87	<i>Nano Lett.</i> 2016, 16 , 7718
NiSe	Ni foam	271, ~350, 380 at 10, 50, 100 mA cm ⁻²	80	J. Energy Chem. 2017, 26 , 1217
Ni ₃ S ₂ @MoS ₂ /FeOOH	Ni foam	260 at 10 mA cm ⁻²	49	<i>Appl. Catal. B</i> 2019, 244 , 1004

previsoulsy reported electrocatalysts in the alkaline media.

1.If not metioned specifically, all overpotentials were corrected with iR compensation. 2. If not metioned

specifically, all electrocatalysts are directly synthesized on conductive substrates.

Table S3 Comparison of water-splitting performances for D-Ni $_5P_4|Fe$ nanosheets with

Electrocatalyst	Substrate	Potential	Ref.
D-Ni ₅ P ₄ Fe	D-Ni ₅ P ₄ Fe Carbon paper		This work
NiCo ₂ P ₂ /graphene	Ti mesh	1.61 V at 10 mA cm ⁻²	Nano Energy 2018,
quantum dot	11 mesn		48 , 284
N NIMO /NIC.	Carbon alath	1.60 V at $10 \text{ m} \text{ A} \text{ am}^2$	Adv. Funct. Mater.
IN-INIMOO4/INI52	Carbon cloth	1.00 v at 10 mA cm ⁻	2019, 29 , 1805298
	Carban alath	1 (7 M + 10 A - 2	J. Mater. Chem. A
NIMOP ₂ nanowires	Carbon cloth	1.67 v at 10 mA cm ²	2017, 5 , 7191
NiCo ₂ S ₄ nanorod	NT: C	1 (1) + 20 + -2	J. Power Sources
arrays	INI TOAM	1.64 v at 20 mA cm ²	2018, 402 , 116
NI: D	NI: £	$1.62 \text{ M} = 10 \text{ m} \text{ A} \text{ m}^2$	J. Energ. Chem.
IN12P	Ni Ioam	1.03 v at 10 mA cm ²	2017, 6 , 1196
CriCa O NW	N: f	1 (1 V + 10 A - 2	Adv. Funct. Mater.
CuCo ₂ O ₄ -IN ws	Ni Ioam	1.01 v at 10 mA cm ²	2016, 26 , 8555
	N: f	1.(1. V = 10 = 1 - 2)	Adv. Funct. Mater.
INI/INIP//INI/INIP	INI IOAM	1.01 v at 10 mA cm ²	2016, 26 , 3314

previsoulsy reported electrocatalysts in the alkaline media.