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Machine Learning HAADF STEM image quantification
The HAADF STEM imaging mode provides structural images where intensities are proportional to 
both the thickness and mean atomic number Z1  (Au columns appear brighter than In-Sb columns). By 
assuming a constant sample thickness, this can be efficiently used to distinguish between columns 
containing Au atoms and pure In-Sb columns. The image was segmented into cells containing atomic 
columns2,3. This has the advantage that all image scattering is associated to some atomic column. Due 
to the noise inherent to the experiment, intermixing between the Au and In-Sb phases is studied atomic 
column-by-column, similar as in4. Here we used Machine Learning algorithms (Random Forest) as 
implemented in Trainable Weka Segmentation5 to statistically distinguish between these phases, as 
successively used in HAADF STEM Tomography6. For the Trainable Weka Segmentation the 
following training features were used: mean, median, variance, maximum, minimum. The classes were 
balanced. The rest settings were set on their default values (classifier: fast random forest of 200 trees 
with 2 features per tree). The reference areas were used for the Au atomic columns and In-Sb atomic 
columns, as indicated in Fig. S1a. As a result of image quantification of analysis area (area with Au 
atom diffusion into the bulk InSb crystal -Fig. S1a) the Au probability map and InSb probability map is
computed Fig. S1b-c. Since the probability of finding Au is directly proportional to the number of Au 
atoms in the atomic row (assuming constant sample thickness) and ProbabilityAu+ProbabilityInSb=1, so 
the probability of finding Au is directly the Au atoms concentration in the sample (value “1” 
corresponds to the concentration of 100 atomic %). The histogram of Au probability (Au atomic 
concentration) from the area with Au atom diffusion into the bulk InSb crystal is presented in Fig. S1d. 
Several local maxima are seen Fig. S1d and Table S1. This is compared with EDX measurements of 
this region as presented in histogram of Au atomic concentration from EDX Fig.  1e and Table S1. The 
quantitative HAADF STEM shows more local maxima in comparison to the EDX measurements, so in 
this case in more locally sensitive to the changes of Au atomic concentrations.    

HAADF STEM quantification
Au atomic concentrations 

[X at.]

EDX measurements
Au atomic concentration

[X at.]

0.037 – 

0.075 0.068

0.12 – 

0.23 – 

0.28 – 

Table S1: Au atomic concentaration in the area with Au atom diffusion into the bulk InSb crystal as 
measured by HAADF STEM image quantification and EDX. In this case the quantitative HAADF 
measurements are more sensitive to local Au concentration then EDX, since more local maxima are 
visible (value “1” corresponds to the concentration of 100 atomic %).

To check the validity of whole chemical quantification procedure i.e. how it estimates the true 
unknown Au concentration, we compared the results of HAADF STEM quantification with EDX 
measurements. Assuming that EDX concentration (0.068) is a mixture of two components as seen by 
HAADF quantification (0.037 and 0.075), which gives central value of 0.060, one can estimate the 
maximal relative quantification uncertainty as relative difference (0.068-0.060)/0.060*100% which is 
equal to 12.6%. 
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In Fig. S1f  Au probability map (Au atomic concentration) from Area1 is presented, one can see in 
details that different amount of Au atoms are built up into the In-Sb lattice atomic positions.
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Fig. S1: HAADF STEM image quantification of Au/InSb at 330C. Graphical presentation of the idea of the 
method (top). a) atomically resolved HAADF STEM image, Au and InSb reference area marked, b) 
quantification result, InSb probability map overlaid on HAADF image from analysis area, c) quantification 
result, Au probability map overlaid on HAADF image from analysis area, d) histogram of Au probability from 
analysis area. Since the probability of finding Au is directly proportional to the number of Au atoms in the 
atomic row (assuming constant sample thickness) and ProbabilityAu+ProbabilityInSb=1, so the probability of 
finding Au is directly the Au atoms concentration in the sample. e) histogram of Au atomic concentration, as 
measured by EDX. The obtained Au probability (Au atomic concentration) from HAADF STEM quantification 
matches well the EDX measurements. The main maxima, corresponding to the main atomic concentrations are 
marked. It is seen that HAADF STEM is more locally sensitive than EDX since additional small maxima are 
visible. f) Au probability map (Au atomic concentration) from Area1, one can see in details that different 
amount of Au atoms are built up into the In-Sb lattice atomic positions. Value “1” corresponds to the 
concentration of 100 atomic %. 



Local sample thickness variations changes for the HAADF quantification area of the thin foil 
sample prepared by FIB were estimated, and their influence on the chemical quantification 
result.
The line profile 1 (Fig. S1-1b) was extracted from HAADF STEM image (Fig. S1-1a), from the area 
without Au diffusion. Since there is only one material in this area (namely InSb) so the changes of the 
HAADF Intensity in this area are only due to the local sample thickness changes, as seen in the line 
profile. Taking the histogram of the intensities from the linear profile Fig. S1-1c, one can calculate the 
mean HAADF intensity and the standard deviation of it. So the relative HAADF signal deviation 
related to the local sample thickness changes is equal to 0.28%.

One can now compare this values with the HAADF signal changes below the nanowire in the Au 
diffusion area, see Fig. S1-1d. It is seen that here the HAADF signal changes by 2.75% (changes from 
3.82*105 to 3.715*105), which is related to Au diffusion into InSb. This HAADF signal changes related 
to the Au diffusion are above deviations related to the estimated local sample thickness changes. Next, 
one can estimate the influence of the local sample thickness changes on the HAADF chemical 
quantification performed by comparing the estimated values 0.28%/2.75%*100%=10.2%. So the 
estimated relative uncertainty of the performed HAADF STEM chemical quantification due to the local
sample thickness variation is 10.2%.
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Fig. S1-1: Local sample thickness variation changes for the HAADF quantification area of the thin foil
sample of Au/InSb at 330C. a) HAADF STEM image of the analysis area, two line profiles indicated. b)
Line profile 1 from HAADF STEM image a) from sample area without Au diffusion, the local HAADF 
signal changes correspond to local sample thickness variations. c) Histogram from Line profile 1 b) 
from the marked by blue rectangle area on the profile. It is seen that the distribution standard deviation
(value of 958) is equal to 0.28% of the mean value (363499). So the relative HAADF signal deviation 
related to the local sample thickness changes is equal to 0.28%. d) Line profile 2 from HAADF STEM 
image a) through the nanowire and Au diffusion area. It is seen that the HAADF signal changes on the 
Au diffusion area by 2.75% (changes from 3.82*105 to 3.715*105) are above deviations related to the 
estimated local sample thickness changes 0.28%.  



Au-AIII-BV Phase Diagrams
The Au-AIII-BV phase diagrams were calculated from First Principles using the generalized gradient 
approximation (GGA) approximation to density functional theory (DFT) and the DFT+U extension to 
it7,8 by the Materials Project9 and also OQMD10,11. In agreement with experimental phase diagrams12–14.
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Fig. S2: Theoretically calculated Phase Diagrams for Au-AIII-BV systems: a) Au-In-Sb, b) Au-In-As, c)
Au-In-P, d) Au-Ga-Sb, e) Au-Ga-As, f) Au-Ga-P, g) Au-In, h)Au-Ga by the Materials Project9 and also 
OQMD10. 



Au-In System Au-Ga System

Phase Formation Energy [eV] Phase Formation Energy [eV]

AuIn2 -0.246 AuGa2 -0.234

Au3In -0.126 AuGa -0.227

Au7In3 -0.141 Au2Ga -0.151

Au10In3 -0.116 Au7Ga2 -0.102

AuIn -0.108 Au3Ga -0.083

AuIn3 0.016 AuGa3 -0.023

Table S2: Theoretically calculated Phases in the Au-In and Au-Ga system together with their formation
energies by the Materials Project9 and also OQMD10. Unstable phases also included. In agreement 
with experimental phase diagrams15,16. 
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RHEED patterns of the atomically clean and reconstructed AIII-
BV surfaces
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Fig. S3: RHEED patterns of the atomically clean and reconstructed surfaces of a) (3x1) 
GaSb(001), b) c(8x2) GaAs(001), c) (4x2) GaP(001), d) (4x2) InAs(001), e) (4x2) InP(001). Main 
reconstruction spots marked.



Multivariate Statistical Analysis

The obtained from SEM, AFM and TEM measurements data on nanostructures formed in the 
Au/AIIIBV systems are presented in Table S3, as in detailed described in the main article. It is seen that
for each AIIIBV system a set of seven parameters is used to describe it, forming seven dimensional 
parameter space. This is later used for multivariate statistical analysis using machine learning 
Multidimensional Scaling (MDS)17 and k-means clustering18.

AIIIBV
system

Average size
[nm]

Surface
density
[1/um2]

Surface
diffusion

radius
[nm]

Average
height
[nm]

Nanostructure
percent under

the sample
surface [%]

Au
concentration

in the
nanostructure
[atomic %]

Number of Au
atoms needed to
release one AIII
metallic atom
on the surface

InSb 146.3 6.1 202.3 8.0 35 33.3 0.5
InAs 35.9 170.5 38.3 7.9 0 75.0 3
InP 31.4 214.4 34.1 11.3 6.45 33.3 0.5

GaSb 13.1 747.4 18.3 0.9 69 33.3 0.5
GaAs 8.2 2003.8 11.2 1.1 41.8 100.0 2.5
GaP 5.8 2088.5 10.9 1.4 13.4 100.0 5.9

Table S3: Measured seven parameters of the formed nanostructures in the Au/AIIIBV systems. 
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Formed Nanostructures Properties
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Fig. S4: Nanostructures resulted from 2ML Au
deposited on InSb(001), GaSb(001), 
GaAs(001), InP(001) and InAs(001) surfaces 
at 330C. Average sizes b), surface densities c) 
and average diffusion radius d) as a function 
of the heat of formation of AIII-BV 
semiconductor. The lines are drawn to guide 
the eye. Different behavior is observed for the 
structures grown on In and Ga rich surfaces.



Results of STEM EDX Analysis

For the examined Au/AIII-BV systems the STEM EDX measurements were performed in form of 
hyperspectral maps. To obtain EDX signal coming only from formed nanostructures the Machine 
Learning Blind Source Separation (BSS) analysis using Non Negative Matrix Factorization (NMF) was
performed on hyperspectral EDX data accordingly to 19,20. Later the chemical compositions were 
quantified by Cliff-Lorimer method, the results of quantification are presented in Table S4.   

Au/AIII-BV System Results of EDX of bulk AIII-BV
[at. %]

Results of EDX of Nanostructures
[at. %]

2ML Au on InSb(001) In: 51.0(1.0) Sb: 49.0(1.0) Au: 34.0(1.0) In: 66.0(1.0)

2ML Au on InAs(001) In: 51.3(1.3) As: 48.7(1.3) Au: 73.3(1.3) In: 26.7(1.3)

2ML Au on InP(001) In: 47.3(2.7) P:52.7(2.7) Au: 28.6(2.7) In: 71.4(2.7)

2ML Au on GaSb(001) Ga: 54.1(4.1) Sb:45.9(4.1) Au: 37.1(4.1) Ga: 62.9(4.1)

2ML Au on GaAs(001) Ga: 47.9(2.1) As: 52.1(2.1) Pure Au

2ML Au on GaP(001) Ga: 52.7(2.7) P: 47.1(2.7) Pure Au

Table S4: Results of STEM EDX analysis for the Au/AIII-BV systems. 
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