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Coefficients for a conical tip

These coefficients were deduced in previously for a cylinder (flat punch), a sphere and a 

conical tip1,2. Here, we summarize the values for a conical tip of half angle θ that indents  a 

layer of thickness h. These coefficients are independent of the viscoelastic model used to 

describe the layer.

Table S1.  Coefficients for a conical tip of half-angle θ.

j αj βj

0
8tan 𝜃

3𝜋 2

1 0.721
8 𝑡𝑎𝑛2𝜃

3ℎ𝜋
3

2 0.650
8 𝑡𝑎𝑛3𝜃

3ℎ2𝜋
4

3 0.491
8 𝑡𝑎𝑛4𝜃

3ℎ3𝜋
5

4 0.225
8 𝑡𝑎𝑛5𝜃

3ℎ4𝜋
6

Complete derivation of the analytical expressions for power-law rheology and Kelvin-

Voigt viscoelastic models

The general expression to determine the force exerted on a finite-thickness viscoelastic 

material is2  (eq 3) in the main text

                                         S1
𝐹(𝑡) =

𝑁

∑
𝑗 = 0

𝛼𝑗

𝑡

∫
0

𝜑𝐸 (𝑡 ‒ 𝑡')
𝑑

𝑑𝑡'(𝐼(𝑡')
𝛽𝑗)𝑑𝑡'
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Kelvin-Voigt expressions. By replacing the  for the KV relaxation function (eq 4 of the 𝜑𝐸

main text), we obtain

                                                       S2
𝐹 =

𝑁

∑
𝑗 = 0

𝛼𝑗

𝑡

∫
0

[𝐸 + 𝜂𝐸𝛿(𝑡 ‒ 𝜏)]
𝑑[𝐼

𝛽𝑗]
𝑑𝜏

𝑑𝜏

The solution is divided in two time intervals, (0, tmax] and (tmax, tf] approach and retraction

The integration gives for the interval (t0, tmax] (approach section of the FDC)

                                              S3
𝐹 =

𝑁

∑
𝑗 = 0

𝛼𝑗𝐼(𝑡)
𝛽𝑗 ‒ 1

[3𝛽𝑗𝜂𝐺�̇�(𝑡) + 𝐸𝐼(𝑡)]

The explicit expression for triangular indentation waveform I=vt, is obtained by introducing 

the coefficients given in the table S1,  

S4
𝐹(𝑡) =  

8tan (𝜃)
3𝜋

𝑣2𝑡[6𝜂𝐺 + 𝐸𝑡] +  0.721
8 𝑡𝑎𝑛2𝜃

3ℎ𝜋
𝑣3𝑡2 [9𝜂𝐺 + 𝐸𝑡)] + 𝑂[

𝑣2𝑡2

ℎ2
]

For obtaining the expression for the interval (tmax, tf] (retraction section), we modify  the 

upper  limit in the eq S2

                                               S5
𝐹 =

𝑁

∑
𝑗 = 0

𝛼𝑗

𝑡1(𝑡)

∫
0

[𝐸 + 𝜂𝐸𝛿(𝑡 ‒ 𝜏)]
𝑑[𝐼

𝛽𝑗]
𝑑𝜏

𝑑𝜏

for   the integral of the term including the Dirac delta function is zero, then 𝑡1(𝑡) < 𝑡

                                                                       S6
𝐹 =

𝑁

∑
𝑗 = 0

𝛼𝑗𝐸𝐼(𝑡1(𝑡))
𝛽𝑗

By introducing the coefficients for the conical tip, the definition of t1 (t) (eq 9 of  the main 

text) and assuming a linear indentation, we deduce 
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            S7
𝐹(𝑡1) =  

8tan (𝜃)
3𝜋

𝐸𝑣2𝑡1
2 +  0.721

8 𝑡𝑎𝑛2𝜃
3ℎ𝜋

𝐸𝑣3𝑡1
3 + 𝑂[

𝑣2𝑡2

ℎ2
]

Power-law rheology expressions. To obtain  the analytic expression of the force for the PLR 

model, we substitute in S1 the relaxation function given in the eq 5

                                                S8
𝐹 =

𝑁

∑
𝑗 = 0

𝛼𝑗

𝑡

∫
0

[𝐸0((𝑡 ‒ 𝜏)
𝑡0

) ‒ 𝛾]𝑑[𝐼
𝛽𝑗]

𝑑𝜏
𝑑𝜏

which for an indentation performed at constant velocity gives 

                                               S9
𝐹 =

𝑁

∑
𝑗 = 0

𝛽𝑗𝛼𝑗𝑣
𝛽𝑗

𝑡

∫
0

[𝐸0((𝑡 ‒ 𝜏)
𝑡0

) ‒ 𝛾]𝜏
𝛽𝑗 ‒ 1

𝑑𝜏

Solving this integral gives us

                                               S10
𝐹 =

𝑁

∑
𝑗 = 0

𝛽𝑗𝛼𝑗𝑣
𝛽𝑗

𝐸0

𝑡0
‒ 𝛾

𝑡
𝛽𝑗 ‒ Υ

Γ[𝛽𝑗]Γ[1 ‒ Υ]

Γ[1 + 𝛽𝑗 ‒ Υ]

For a conical tip (coefficients of table S1)  and by keeping only the two first three terms we 

get the expression of the force during the approach (eq.7 of the main text)

𝐹(𝑡)

=  
8tan (𝜃)

3𝜋
2𝑣2𝑡2( 𝑡

𝑡0
) ‒ 𝛾Γ[2]Γ[1 ‒ Υ]

Γ[3 ‒ Υ]
+  0.721

8 𝑡𝑎𝑛2𝜃
3ℎ𝜋

3𝑣3𝑡3( 𝑡
𝑡0

) ‒ 𝛾Γ[3]Γ[1 ‒ Υ]
Γ[4 ‒ Υ]

+ 𝑂[
𝑣2𝑡2

ℎ2

]
S11

To get the expression of the force during the retraction, we change the upper  limit of the 

integral from t to t1 in eq S9 and use the definition of t1 given by eq 9 of the main, then 

                                 S12
𝐹 =

𝑁

∑
𝑗 = 0

𝛽𝑗𝛼𝑗𝑣
𝛽𝑗

𝑡1

∫
0

[𝐸0((𝑡 ‒ 𝜏)
𝑡0

) ‒ 𝛾]𝜏
𝛽𝑗 ‒ 1

𝑑𝜏

by solving the integral, 
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                                             S13
𝐹 =

𝑁

∑
𝑗 = 0

𝛽𝑗𝛼𝑗𝑣
𝛽𝑗

𝐸0

𝑡0
‒ 𝛾

𝑡1
𝛽𝑗 ‒ Υ

Γ[𝛽𝑗]Γ[1 ‒ Υ]

Γ[1 + 𝛽𝑗 ‒ Υ]

By introducing the coefficients for a conical tip and the constant velocity hypothesis, we get 

the eq 12 of the main text,   

𝐹(𝑡1)

=  
8tan (𝜃)

3𝜋
2𝑣2𝑡1

2(𝑡1

𝑡0
) ‒ 𝛾Γ[2]Γ[1 ‒ Υ]

Γ[3 ‒ Υ]
+  0.721

8 𝑡𝑎𝑛2𝜃
3ℎ𝜋

3𝑣3𝑡1
3(𝑡1

𝑡0
) ‒ 𝛾Γ[3]Γ[1 ‒ Υ]

Γ[4 ‒ Υ]
+

𝑂[
𝑣2𝑡2

ℎ2
]

S14

where   is given by eq 10 of  the main text.𝑡1(𝑡)

Correspondence between velocities and equivalent indentation frequencies 

To find a correspondence between the velocities used in FDC-nanorheology and the 

frequencies applied in oscillatory microrheology experiments3–5 we propose the following 

protocol. First, we define an average velocity for a sinusoidal displacement by multiplying 

the frequency of the oscillatory movement f by the total distance travelled in a single cycle 

dcycle,

     (S.14)𝑣𝑎𝑣 = 𝑑𝑐𝑦𝑐𝑙𝑒 ∗ 𝑓

By applying this analogy to a typical value of the amplitude used in AFM-oscillatory 

microrheology (15 nm), we get that dcycle would be of 60 nm. The linear relationship between 

the equivalent sinusoidal frequency and the FDC velocity would be determined by a 

multiplicative factor of 0.06. Here, a velocity of 300 µm/s corresponds to an equivalent 

frequency of 5 kHz while a  velocity of 10 µm/s corresponds to a frequency of  166 Hz.  

Statistical analysis of the experimental data
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The  FDCs were obtained  on 20 different NIH 3T3 fibroblast cells. On each of them the tip’s 

velocity was varied from 10 to 300 µm/s range. For each velocity, we acquired  64 FDCs on 

each cell. Each experimental point plotted in the Figure 6 (panels a-b) represents the median 

value of the 64 FDCs. 

A box-plot representation has been used to show the distribution of E0 and γ obtained for 

each velocity. In a box plot, the line corresponds of the distribution, respectively. The top 

and bottom of the box represent, respectively, the 75th and 25th percentiles.  The whiskers 

out of the box denote the range of outer-most data that fall within 1.5 x interquartile range.

Figure S2 shows that for NIH 3T3 fibroblasts an increase in E0 reduces the power-law 

exponent γ. In other words, the fibroblasts present lower fluidity when the apparent Young’s 

modulus increases.
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Figure S1. a. Schematic comparison between the movement executed in a FDC and the tip 

displacement exerted in an OMR kind experiment. b. Relation between frequencies and 

velocities for an amplitude of 15 nm in the OMR sinusoidal oscillation. 
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Figure S2. Plot of E0 as function of γ for all experimental results. The blue line represents 

the median value and the area shaded in blue is the region delimitated by median±mean 

deviation.
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