Supporting Information

Selenium-Rich Nickel Cobalt Bimetallic Selenide with Core-Shell Architecture Enables Superior Hybrid Energy Storage Device

Yi-Lin Liu^{a, 1}, Cheng Yan^{a,b, 1}, Gui-Gen Wang^{a,*}, Fei Li^a, Qi Kang^c, Hua-Yu Zhang^{a,*},

Jie-Cai Han^{a,d}

^aShenzhen Key Laboratory for Advanced Materials,

Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China

^bSchool of Chemistry, Faculty of Science, The University of Sydney, Sydney, New

South Wales 2006, Australia

^cDepartment of Polymer Science and Engineering, Shanghai Key Laboratory of

Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai

200240, China

^dCenter for Composite Materials, Harbin Institute of Technology, Harbin 150080,

China

KEYWORDS: nickel cobalt selenide, cathode, energy storage, core-shell structure,

battery-supercapacitor hybrids

E-mail: wangguigen@hit.edu.cn (Gui-Gen Wang) E-mail: hyzhang@hit.edu.cn (Hua-Yu zhang)

Figure S1. SEM images of the $Co_9Se_8/Co_{0.85}Se-1$ at a) and b) low magnification; c)

The corresponding EDS elemental mappings of Ni, Co and Se.

Figure S2. SEM images of the (NiCo)₉Se₈/(NiCo)_{0.85}Se-0.5 at a) and b) low magnification; c) The corresponding EDS elemental mappings of Ni, Co and Se.

Figure S3. SEM images of the (NiCo)₉Se₈/(NiCo)_{0.85}Se-2 at a) and b) low

magnification; c) The corresponding EDS elemental mappings of Ni, Co and Se.

Figure S4. The EDS spectrum of the (NiCo)₉Se₈/(NiCo)_{0.85}Se-1 core-shell sphere.

Figure S5. XPS spectra of the as-synthesized (NiCo)₉Se₈/(NiCo)_{0.85}Se-1 core-shell sphere: C 1s.

Figure S6. BET test: Nitrogen adsorption/desorption isotherms and the pore-size distribution. a-b) Co₉Se₈/Co_{0.85}Se-1; c-d) (NiCo)₉Se₈/(NiCo)_{0.85}Se-0.5; e-f)

(NiCo)₉Se₈/(NiCo)_{0.85}Se-1; g-h) (NiCo)₉Se₈/(NiCo)_{0.85}Se-2.

Figure S7. Correlation between peak current density and square roots of scan rates of

Ni-Co-Se-1

Figure S8. The electrochemical performance of the $Co_9Se_8/Co_{0.85}Se-1$: (a) The CV

curves; (b) The GCD curves.

Figure S9. The electrochemical performance of the (NiCo)₉Se₈/(NiCo)_{0.85}Se-0.5: (a)

The CV curves; (b) The GCD curves.

Figure S10. The electrochemical performance of the (NiCo)₉Se₈/(NiCo)_{0.85}Se-2: (a)

The CV curves; (b) The GCD curves.

Figure S11. Electrochemical properties of the Ni-Co-Se-1: (a) The cycling

performance; (b) SEM images of Ni-Co-Se-1 after 12000 cycles.

Figure S12. The electrochemical performance of AC: (a) The CV curves; (b) The

GCD curves; (c) Rate performance; (d) EIS curves.

Electrode composition	Electrolyt	Specific capacitance	Counter electrode	Cyclic stability	Ref.
	C				
(NiCo) ₉ Se ₈ /(NiCo) _{0.85} Se	1M KOH	164.44 mAh g ⁻¹ at 1 A g ⁻¹	Hg/HgO electrode	85.72 % after 5000 cycles	This work
		(1315.52 F g ⁻¹ at 1 A g ⁻¹ /			
		591 C g ⁻¹ at 1 A g ⁻¹)			
$Ni_{0.67}Co_{0.33}Se^{[1]}$	6M KOH	535 C g ⁻¹ at 1 A g ⁻¹	Hg/HgO electrode	63 % after 2000 cycles	S 1
NiSe-CoSe ^[2]	6M KOH	584 C g ⁻¹ at 1 A g ⁻¹	Hg/HgO electrode	83.8 % after 1000 cycles	S2
$(Ni_{0.33}Co_{0.67})Se_2^{[3]}$	ЗМ КОН	827.9 F g ⁻¹ at 1 A g ⁻¹	saturated calomel electrode	78.1 % after 2000 cycles	S3
Co _{0.85} Se nanosheet ^[4]	2M KOH	422 F g ⁻¹ at 1 A g ⁻¹	saturated calomel electrode	93 % after 2000 cycles	S4
NiCoSe ₂ ^[5]	6M KOH	750 F g^{-1} at 3 A g^{-1}	saturated calomel electrode	92.1 % after 5000 cycles	S5
NiSe ₂ nanosheet ^[6]	1M KOH	466 F g ⁻¹ at 3 A g ⁻¹	Hg/HgO electrode	81.3 % after 1000 cycles	S6
NiCo _{2.1} Se _{3.3} /Graphene ^[7]	6M KOH	742.4 F g^{-1} at 1 mA cm ⁻²	Hg/HgO electrode	83.8 % after 1000 cycles	S7

Table S1. Comparison of electrochemical performance between various hybrid pseudocapacitive electrodes and our work.

CoSe ₂ Nanoarrays ^[8]	ЗМ КОН	759.5 F g ⁻¹ at 1 mA cm ⁻²	saturated calomel electrode	94.5 % after 5000 cycles	S8
$Ni_{0.9}Co_{1.92}Se_4^{[9]}$	ЗМ КОН	1021.1 F g^{-1} at 2 mA cm ⁻²	Hg/HgO electrode	88.39 % after 5000 cycles	S9
$Ni_{0.5}Co_{0.5}Se_2^{[10]}$	6М КОН	524 C g ⁻¹ at 1 A g ⁻¹	Hg/HgO electrode	91 % after 3500 cycles	S10
$CoSe_2/C^{[11]}$	2М КОН	726 F g ⁻¹ at 2 A g ⁻¹	saturated calomel electrode	85.1 % after 2000 cycles	S11
$NiCo_2S_{2,2}Se_{1.8}/CC^{[12]}$	6М КОН	870 C g ⁻¹ at 2.5 A g ⁻¹	Hg/HgO electrode	83 % after 5000 cycles	S12
NiSe nanorod ^[13]	6М КОН	6.81 F g ⁻¹ at 5 mA cm ⁻²	Hg/HgO electrode	78.9% after 2000 cycles	S13
NiSe ₂ ^[14]	4 M KOH	1044 F g ⁻¹ at 3 A g ⁻¹	Ag/AgCl electrode	67 % after 2000 cycles	S14
CoSe ^[15]	1M KOH	510 F g ⁻¹ at 1 A g ⁻¹	saturated calomel electrode	91% after 5000 cycles	S15

References

- [1] H. Chen, S. Chen, M. Fan, C. Li, D. Chen, G. Tian, K. Shu, *Journal of Materials Chemistry A* 2015, 3, 23653.
- [2] H. Chen, M. Fan, C. Li, G. Tian, C. Lv, D. Chen, K. Shu, J. Jiang, *Journal of Power Sources* 2016, 329, 314.
- [3] L. Quan, T. Liu, M. Yi, Q. Chen, D. Cai, H. Zhan, *Electrochimica Acta* 2018, 281, 109.
- [4] X. Zhao, X. Li, Y. Zhao, Z. Su, Y. zhang, R. Wang, Journal of Alloys and Compounds 2017, 697, 124.
- [5] L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma, X. Sun, J. Sun, X. Zhang, C. Yuan, Advanced Functional Materials 2018, 28.
- [6] A. Chang, C. Zhang, Y. Yu, Y. Yu, B. Zhang, ACS Appl Mater Interfaces 2018, 10, 41861.
- [7] Y. Wang, W. Zhang, X. Guo, K. Jin, Z. Chen, Y. Liu, L. Yin, L. Li, K. Yin, L. Sun,Y. Zhao, ACS Appl Mater Interfaces 2019, 11, 7946.
- [8] T. Chen, S. Li, J. Wen, P. Gui, Y. Guo, C. Guan, J. Liu, G. Fang, Small 2018, 14.
- [9] W. An, L. Liu, Y. Gao, Y. Liu, J. Liu, RSC Advances 2016, 6, 75251.
- [10] X. Song, C. Huang, Y. Qin, H. Li, H. C. Chen, *Journal of Materials Chemistry A*2018, 6, 16205.
- [11] Y. Zhang, A. Pan, Y. Wang, X. Cao, Z. Zhou, T. Zhu, S. Liang, G. Cao, *Energy Storage Materials* 2017, 8, 28.
- [12] J. Lin, Z. Zhong, H. Wang, X. Zheng, Y. Wang, J. Qi, J. Cao, W. Fei, Y. Huang,

- J. Feng, Journal of Power Sources 2018, 407, 6.
- [13] Y. Tian, Y. Ruan, J. Zhang, Z. Yang, J. Jiang, C. Wang, *Electrochimica Acta* 2017, 250, 327.
- [14] S. Wang, W. Li, L. Xin, M. Wu, Y. Long, H. Huang, X. Lou, *Chemical Engineering Journal* 2017, 330, 1334.
- [15] X. Zhang, J. Gong, K. Zhang, W. Zhu, J.-C. Li, Q. Ding, Journal of Alloys and Compounds 2019, 772, 25.