Supporting Information

Rapid and mass-producible synthesis of high-crystallinity MoSe₂ nanosheets by ampoule-loaded chemical vapor deposition

Na Liu,^a Woong Choi,^b Hyeongi Kim,^c Chulseung Jung,^a Jeonghun Kim,^a Soo Ho Choo,^a Yena Kwon,^a Byeong-Seon An,^a Seongin Hong,^a Seongjoon So,^c Cheol-Woong Yang,^{*a} Jaehyun Hur ^{*c} and Sunkook Kim ^{*a}

^a School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea

^b School of Advanced Materials Engineering, Kookmin University, Seoul, 02707, Republic of Korea

^c Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi, 13120, Republic of Korea

*Corresponding authors.

E-mail address: <u>cwyang@skku.edu</u> (C.-W. Yang), <u>jhhur@gachon.ac.kr</u> (J. Hur), <u>seonkuk@skku.edu</u> (S. Kim).

[†]N. Liu and W. Choi contributed equally to the work.

Keywords: Transition-metal dichalcogenides, Molybdenum diselenide, Chemical vapor deposition, Rapid growth, Mass-production

Fig. S1. (a) Put MoO_3 and Se powder into quartz tube I. (b) Put a Si substrate into quartz tube II. (c) Insert quartz tube I into quartz tube II horizontally. (d) Quartz-tube assembly. (e) Place quartz-tube assembly at the center of CVD furnace. (f) CVD growth setup for $MoSe_2$.

Fig. S2. Picture of a pressed 60-min CVD-grown MoSe₂ on SiO₂ substrates.

Fig. S3. EDS spectra of 5-min growing sample.

Fig. S4. EDS spectra of 15-min growing sample.

Fig. S5. EDS spectra of 30-min growing sample.

Fig. S6. SEM images of the CVD-grown MoSe₂ on SiO₂ substrates with the growth time of (ab) 30 and (c-d) 60 min in different magnification, respectively.

Fig. S7. (a-d) More SEM images of the 60-min CVD-grown MoSe₂.

200 250 300 350 400 Raman shift (cm⁻¹)

Fig. S8. (a-d) SEM images and (e) Raman spectrum of the CVD-grown MoSe₂ with the growth temperature of 750, 800, 850, and 900 °C, respectively.

Fig. S9. (a) Raman spectra of CVD-grown crystals at growth times of 5 to 60 min. (b) Raman spectra of the part of marked in the black dashed box in (a).

Fig. S10. XRD spectra of CVD-grown crystals at growth times of 5 to 60 min.

	Peak pos (Pattern)	ition (°)				
Mo4O11	7.3 (200)	14.5 (400)	21.8 (600)	22.5 (501)	29.2 (800)	33.0 (312)
MoO ₂	18.5 (001)	26.1 (111)	37.4 (002)	53.7 (222)		
MoSe ₂	13.8 (002)	27.7 (004)	42.0 (006)	57.0 (008)		

1 50

Fig. S11. XPS spectra of CVD-grown crystals at growth times of 5 to 60 min.

Sample	Mo ⁶⁺ <i>3d</i> (MoO ₃)	$Mo^{5+} 3d$ (Mo ₄ O ₁₁)	Mo ⁴⁺ <i>3d</i> (MoO ₂)	$\frac{\mathrm{Mo}^{4+} 3d}{(\mathrm{MoSe}_2)}$	Total
5 min	32.72 at.%	35.07 at.%	30.21 at.%	2.00 at.%	100 at.%
10 min	24.66 at.%	36.99 at.%	35.45 at.%	2.90 at.%	100 at.%
15 min	22.48 at.%	36.31 at.%	37.39 at.%	3.82 at.%	100 at.%
20 min	14.81 at.%	37.96 at.%	38.80 at.%	8.43 at.%	100 at.%
30 min	-	6.38 at.%	23.15 at.%	70.47 at.%	100 at.%
60 min	-	5.42 at.%	17.83 at.%	76.75 at.%	100 at.%

Table S2. Atomic fraction of four valance species of Mo 3d in Figure 2c and S10.

Fig. S12. (a) and (b) SEM images and (c) EDS of CVD-grown products using MoO_3 and Se precursors without hydrogen injection. Inset of (a) is a picture of the products.

Fig. S13. Pictures of collected as-grown MoSe₂ nanosheets.

Fig. S14. XRD spectra of c-MoSe₂ and a-MoSe₂.

Table S3. Coulombic efficiency of c-MoSe₂@G, a-MoSe₂@G, and c-MoSe₂.

	Coulombic efficiency (%)				
	c-MoSe ₂ @G	a-MoSe ₂ @G	c-MoSe ₂		
1 st	71.8	61.7	79.7		
2^{nd}	96.8	83.4	94.8		
3 rd	97.8	93.0	95.4		