Electronic supplementary information (ESI)

Unique N doped Sn₃O₄ nanosheets as an efficient stable photocatalyst for hydrogen generation under sunlight.

Sagar Balgude^{ab}, Yogesh Sethi^a, Aarti Gaikwad^c, Bharat Kale^{a*}, Dinesh Amalnerkar^d, Parag Adhyapak^{a*}

^aCentre for Materials for Electronics Technology, Panchawati, Pashan Road, Pune-411008, India. ^bD. Y. Patil College of Engineering, Ambi, Pune-410507, India.

^cCSIR- National Chemical Labortory, Pune-411008, India.

^dInstitute of Nano Science & Technology, Hanyang University, Seoul-04763, South Korea.

* Corresponding Author: Dr. P. V. Adhyapak Email: adhyapak@cmet.gov.in, adhyapakp@yahoo.com,

Dr. Bharat B. Kale Email: <u>bbkale@cmet.gov.in.</u>

Table A1: Experimental deta

Sr. No.	Tin precursor (Purity 99%)	Tin precursor conc.	Urea (Purity 99%) conc.	Hydro- thermal treatment time/ temp.	Yield (%)	Morphology observed
01	Stannous oxalate	0.34 mol	0.0000 mol	180°C/ 24 h	86.23	layered structure
02	Stannous oxalate	0.34 mol	0.0034 mol	180°C/ 24 h	84.33	irregular shaped premature partial nanosheet-like
03	Stannous oxalate	0.34 mol	0.0068 mol	180°C/ 24 h	88.46	mixed morphology i. e. Irregular shaped nanosheets and deposition of nanoparticles on it
04	Stannous oxalate	0.34mol	0.0102 mol	180°C/ 24 h	85.78	Utmost sheet-like
05	Stannous oxalate	0.34 mol	0.0136 mol	180°C/ 24 h	86.65	nanosheet-like
06	Stannous oxalate	0.34 mol	0.0170 mol	180°C/ 24 h	84.47	aggregated nanosheets

Table A2. Comparison of elemental analysis of 4% N doped Sn₃O₄.

	XPS	EDS	
Elements	Atomic weight %	Atomic weight %	
Sn	60.08	66.47	
Ν	3.4 3.36		
0	36.52	30.17	

Supporting SI1: Raman Spectra

Figure SI 1 Raman Spectra of pristine (S1) and 4% N doped Sn₃O₄ (S5).

Supporting SI 2: Photoresponse study

Figure SI 2 Photo response of Sn_3O_4 and 4% N- Sn_3O_4 under sunlight.

Supporting SI 3: Comparison with artificial light as source

Figure SI 3 Hydrogen production as a function of irradiation time using undoped and N doped Sn_3O_4 sample under a) artificial light b) natural sunlight.

The photocatalytic activity of the as-synthesized samples (S1-S6) for hydrogen evolution via. H_2O splitting was performed. Cumulative H_2 production using undoped and N doped Sn_3O_4 sample under artificial and natural sunlight is shown in figure SI3. This study was performed in the presence of a co-catalyst and sacrificial agent. The volume of H_2 generated was observed by gas chromatograph (GC) with respect to time. Pure Sn_3O_4 shows less activity under a xenon lamp since UV radiation is eliminated. The Sn_3O_4 shows 79.41 µmol⁻¹h⁻¹0.1g⁻¹ hydrogen production under natural sunlight because of availability of both UV and visible light. Amongst all catalysts, 4% N-Sn₃O₄(S5) showed the highest rate for H_2 generation under xenon and natural sunlight i.e., 542.44 and 654.33 µmol⁻¹h⁻¹0.1g⁻¹, respectively. S2, S3, S4, and S6 show H_2 generation of 86.25, 237.18, 307.12, and 401.02 µmol⁻¹h⁻¹0.1g⁻¹, under the xenon lamp and 122.86, 318.10, 404.24 and 562.43 µmol⁻¹h⁻¹0.1g⁻¹, under natural sunlight, respectively. Table A1 lists results of H_2 generation in µmol⁻¹h⁻¹0.1g⁻¹ under xenon and natural sunlight.

Supporting SI 4: Effect of Pt loading

Figure SI 4 Effect of Pt loading on photocatalytic H₂ evolution under sunlight.

Photocatalyst	Band gap Energy (eV)	Under Xenon lamp H ₂ (μmol/h/0.1g)	Under Natural sunlight H ₂ (μmol/h/0.1g)
0% N-Sn ₃ O ₄ (S1)	2.83	66.14	79.41
1% N-Sn ₃ O ₄ (S2)	2.69	86.25	122.86
2% N-Sn ₃ O ₄ (S3)	2.57	237.18	318.10
3% N-Sn ₃ O ₄ (S4)	2.53	307.12	404.24
4% N-Sn ₃ O ₄ (S5)	2.36	542.44	654.33
5% N-Sn ₃ O ₄ (S6)	2.45	401.02	562.43

Table A3. Photocatalytic hydrogen evolution in μ mol⁻¹h⁻¹0.1g⁻¹

Table A4. Summary of recent research reports to photocatalytic hydrogen evolution via. H₂O splitting.

Sr. No	Photocatalyst material	Light source used	Hydrogen evolution (μmol/h)	References
01	N doped Sn ₃ O ₄	300W Xe lamp	542.44 μmol h ⁻¹ 0.1g ⁻¹	Current work
02	Sn ₃ O ₄ /TiO ₂	300 W Xe arc lamp	83.5 μmol h ⁻¹ 0.2g ⁻¹	Chen et al [26]
03	Sn ₃ O ₄ /N-TiO ₂	300 W Xe lamp	32 μmol h ⁻¹ 0.1g ⁻¹	Xin Yu et al [25]
04	Sn ₃ O ₄	300 W Xe arc lamp	40 μmol h ⁻¹ 0.3g ⁻¹	Manikandan et al [29]