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1 Genetic operators in the 2D-GA

The different genetic operators used in the 2D-GA are listed in Table 1. These can be seen
as the 2D equivalents of 3D operators used in crystal structure optimization.!3

Table 1
Proba-
Operator  bility = Description
Cut-and-  50%  Cuts two parent structures along a plane perpendicular to a randomly
splice chosen cell vector and combines the different halves into a new struc-
pairing ture. The new a and b vectors are chosen as random linear combi-

nations of the parent vectors and are then rescaled so that the initial
surface area corresponds to the average of the best 20% structures in
the population.

Strain 15%  Scales the surface unit cell vectors and atomic positions according to

mutation strain components drawn from a Gaussian distribution with o = 0.7.

Shear 10%  Applies a shear strain perpendicular to the a or b vectors (chosen at

mutation random), which hence only affects the atomic ¢ coordinates.

Rattle 10%  Randomly displaces 80% of the atomic coordinates with amplitudes

mutation uniformly selected between 0 and 2.5 A.

Soft 15%  Moves the atoms along the vibrational mode with the lowest fre-

mutation quency, as identified by a simple pairwise interaction model.* If a
structure has already been soft mutated, the next vibrational mode
is chosen.




2 Bulk energetics with the matsci DFTB parameters

Table 2 shows the relative energies (per formula unit) for various bulk Al,Oj3 polytypes
calculated with the present DFT setup and with the matsci[5] DFTB parameter set using
(-dependent Hubbard parameters. Bulk Al,Os polymorphism was not taken into account
in the matsci parametrization procedure, leading to a poor description of the energetical
ordering.

Table 2

AE (eV/f.u.)

optB86b  DFTB
Model -vdW matscilh]

« 0 0
0 0.15 -0.56
K 0.15 -0.31
v ma® 0.30 -0.52
’}/pN7 0.30 -0.52
Ypr®? 0.42 0.16
ke’ 0.23 -0.02
) Oru't 0.43 -0.23
dxp1t? 0.14 -0.50
dxpat? 0.14 -0.50
bixbyite 0.17 -0.58




3 Structures of known bulk polymorphs

Figure 1: Structures of the known bulk polymorphs listed in Table 1 of the main text and in
Table 2 of the ESI. The atomic coordinates and cell vectors are provided in the ZIP archive
of the ESI.
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4 Parity diagrams for the thin film training set

Figures 2 and 3 show the parity diagrams for the bulk-opt (blue) and film-opt (orange)
DFTB total energies for two series of AlyOg thin films, in comparison with DFT. The thin film
structures have been obtained by 2D-GA searches in the thickness intervals of 3.5-5 A (Figure
2) and 6.5-8 A (Figure 3) using the bulk-opt parametrization. The film-opt parameters
have been refined so as to minimize the deviation from parity for these data sets.

Figure 2: 3.5-5 A thickness interval.
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Figure 3: 6.5-8 A thickness interval.
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5 Structure-stability relations in bulk Al,O3

To illustrate the difficulties in relating the relative stabilities of the bulk Al;O3 polymorphs
to differences in local bonding patterns, we analyze the variation in cation coordination as
well as a model based on correlations between bond strengths and bond lengths.

5.1 Cation coordination

The abundances of four- and six-fold coordinated Al atoms for different known bulk poly-
morphs are listed in Table 3 together with energy differences calculated with DFT. The
lack of correlation between both properties can be appreciated by considering e.g. the most
stable o polymorph where all Al atoms are six-fold coordinated. Assigning a higher stability
to this local environment, however, would be contradicted by the relative instability of the
bixbyite phase (consisting also exclusively of 6-fold Al) compared to several other phases
with significant concentrations of 4-fold Al atoms (i.e. &, 6, dxp1 and dkpa).

5.2 Bond-length-bond-strength correlation

The relative stabilities of different bulk structures may also be assessed in terms of the
number and strength of the Al-O bonds. A commonly applied expression for bond strengths
using only local geometric information is given by the model of Pauling[13] and Brown and
coworkers[14]:

Bunalr) = exp (57, m

with parameters b and rq. Energy differences per formula unit may then be written as:

AEABZ( Z Ebond(TAlo)/Nf.u) —< Z Ebond(TAlo)/Nf.u.) . (2)
Al—O bonds A Al—O bonds B

The last column in Table 3 shows the performance of such a model where ry and b have been
adjusted to reproduce the DFT energy differences w.r.t. a-Al,O3 via least-squares fitting.
The fitted parameter values are 7y = 2.29 A and b = 0.35 A. While the model retrieves
a-Al;O3 as the most stable polymorph, it is clear that also this approach is not sufficiently
accurate for the present purposes.



Table 3

Al coordination AE (eV/fu.)

4-fold 6-fold optB86b Bond
Model (%) (%) -vdW model
o 0 100 0 0
dxp1 2 38 62 0.14 0.27
OxB2 2 38 62 0.14 0.29
0 50 50 0.15 0.51
K 25 75 0.15 0.34
bixbyite 0 100 0.17 0.57
. 25 75 0.23 0.19
mct 38 62 0.30 0.40
YeN© 38 62 0.30 0.41
PR 33 67 0.42 0.43
Oru ! 38 62 0.43 0.69




6 Vacancy refilling on dkp;(100) and dkp2(100)

Figures 4 and 5 show the displacements of low-coordinated Al atoms into surface cation
vacancies on dkp1(100) and dkp2(100). The displacements for vy (001) are shown in Figure
7 in the main text.

Figure 4: dxp1(100)
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