Supplementary Information

MIL-47(V) derived hierarchical lasagna-structured V₂O₃@C hollow microcuboid as an efficient sulfur host for high-performance lithium-sulfur batteries

Jing Yang^a, Bo Wang^{a,b,*}, Fan Jin^a, Yu Ning^a, Hao Luo^a, Jian Zhang^a, Fei Wang^a, Dianlong Wang^{a,*}, Yu Zhou^b

^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China.

^b School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

* Corresponding author. E-mail address: <u>wangbo19880804@163.com</u> (B. Wang),

wangdianlonghit@163.com (D. L. Wang)

ESI includes experimental section, 17 figures, 3 tables and 10 references.

Experimental section

Visualized adsorption tests

 Li_2S_6 solution (5 mmol L⁻¹) was prepared by mixing lithium sulfide and sulfur with mole ratio 1:5 and then dissolved in 1,2-dimethoxyethane (DME). 10 mg of V₂O₃@C, commercial V₂O₃ and amorphous carbon framework were dispersed in 3 mL Li₂S₆ solution, respectively. The whole experiment was conducted in an argon-filled glove box.

Fabrication of symmetric cell and cyclic voltammetry test

Symmetric cell was assembled with $V_2O_3@C$ (or amorphous carbon framework for comparison) electrode as both working and counter electrode and 20 µL electrolyte (using DOL/DME (1:1, vol.%) as the solvent with 0.5 mmol L⁻¹ Li₂S₆ and 1 mmol L⁻¹ LiTFSI). Cyclic voltammetry (CV) test of the symmetric cell was conducted with voltage range of -1.0 V to 1.0 V.

Li₂S nucleation measurement

The cell of nucleation measurement was assembled with cathode material load on carbon-fiber-paper (CP) without sulfur, Celgard 2400 membrane as the separator, lithium tablets as the anode, Li_2S_8 (0.2 mol L⁻¹, 20 µL) as catholyte and LiTFSI (1 mol L⁻¹, 25 µL) as anolyte. Li₂S₈ with a concentration of 0.2 mol L⁻¹ was prepared by dissolving sulfur and lithium sulfide (molar ratio 7:1) in tetraglyme, followed by vigorous stirring for 24 hours. CP was punched into circle disk with a diameter of 14 mm and coated with V₂O₃@C or commercial V₂O₃ with the areal density of 1.5 mg cm⁻². The batteries were galvanostatically discharged to 2.06 V at 0.112 mA and then maintained potentiostatically at 2.05 V until the current was below 10⁻⁵ A. Use the Faraday's law to evaluate the nucleation/growth rule of Li₂S.

Theoretical calculation

The theoretical calculations were performed with periodic boundary conditions used Materials Studio 2017 (from Accelrys Inc.). For V_2O_3 , the (104) surface were used as the contact facet with sulfur species, according to the HRTEM characterization results. The spin-polarized first-principles calculations were performed based on density functional theory (DFT) as implemented in the DMol³ module with the Perdew-Burke-Ernzerhof (PBE) functional method. The cut-off

energy for the basis function was 300 eV. Structural relaxations were performed until all the residual forces on atoms were less than 0.02 eV·Å⁻¹. The convergence criteria for the energy calculation and geometric optimization were set as below: a maximum force tolerance of 10^{-6} eV and an energy tolerance of 10^{-5} eV.

Figures

Fig. S1[†] SEM image of MIL-47.

Fig. S2† (a) SEM image of $V_2O_3@C$ host. (b) The larger version of the marked area in (a).

Fig. S3[†] XRD pattern of (a) MIL-47 and (b) V₂O₃@C with the corresponding crystal plane.

Fig. S4[†] Raman spectrum of V₂O₃@C.

Fig. S5[†] Nitrogen adsorption/desorption isotherms combined with the distribution curves of pore size of (a, b) $V_2O_3@C$ and (c, d) commercial V_2O_3 .

Fig. S6^{\dagger} SEM image of commercial V₂O₃.

Fig. S7[†] TGA curves of (a) $V_2O_3@C$ in air and (b) $V_2O_3@C/S$ and $V_2O_3@C$ in argon.

Fig. S8^{\dagger} XPS spectra of O 1s for V₂O₃@C.

Fig. S9[†] CV curves of symmetric cells using the electrolyte without Li_2S_6 additives within -1.0~1.0 V at a scan rate of 50 mV s⁻¹.

Electronic Supplementary Material (ESI) for Nanoscale This journal is © Royal Society of Chemistry 2020
(a)

Fig. S10^{\dagger} (a) Top views of the optimal configurations of sulfur species adsorbed on graphene. (b) Binding energies of Li_xS_y molecules with graphene surface.

Fig. S11^{\dagger} SEM image and element mapping of V₂O₃/C/S.

Fig. S12⁺ Galvanostatic charge/discharge profiles at current rates ranging from 0.1 C to 2 C of (a) V_2O_3 @C/S and(b) V_2O_3 /C/S.

Fig. S13^{\dagger} Examination of the separators from disassembled (a) V₂O₃@C/S and(b) V₂O₃/C/S batteries after 200 cycles at 0.2 C.

Fig. S14⁺ Examination of the lithium electrodes from disassembled (a) $V_2O_3@C/S$ and(b) $V_2O_3/C/S$ batteries after 200 cycles at 0.2 C.

Fig. S15^{\dagger} SEM images of V-MOFs with VCl₃ and H₂BDC in different proportions, (a) 1: 0.25, (b) 1: 0.5, (c) 1: 0.75, (d) 1: 1.

Fig. S16[†] The electrochemical performances of the V_2O_3 NP@C/S cathodes with VCl₃ and H₂BDC in different proportions at 0.2 C.

Electronic Supplementary Material (ESI) for Nanoscale This journal is © Royal Society of Chemistry 2020

Fig. S17[†] (a) Rate capabilities of the V₂O₃@C/S and V₂O₃/C/S cathodes from 0.1C to 2C with a sulfur mass loading of 7.9 and 7.2 mg cm⁻², respectively. (b) Cycling performances of the V₂O₃@C/S and V₂O₃/C/S cathodes at 0.2C with a sulfur mass loading of 7.9 and 7.2 mg cm⁻², respectively. (c) Long-term cycling performance of the V₂O₃@C/S and V₂O₃/C/S cathode at 1C with a sulfur mass loading of 7.9 and 7.2 mg cm⁻², respectively.

Species	Binding Energy (eV)	Species	Binding Energy (eV)
G/Li ₂ S	-7.481	V_2O_3/Li_2S	-5.287
G/Li ₂ S ₂	-2.721	V_2O_3/Li_2S_2	-7.928
G/Li_2S_4	-1.860	V_2O_3/Li_2S_4	-6.625
G/Li ₂ S ₆	-4.604	V_2O_3/Li_2S_6	-6.520
G/Li_2S_8	-2.537	V_2O_3/Li_2S_8	-7.579
G/S ₈	-2.187	V_2O_3/S_8	-5.828

Table S1^{\dagger} Binding energies of sulfur species on the (104) plane of V₂O₃ and on graphene, respectively.

Materials	Sulfur loading (mg cm ⁻²)	S content (wt%)	Initial capacity (mAh g ⁻¹)	Cycles	Capacity Decay (% per cycle)	Ref.
V ₂ O ₃ @C/S	3.7/7.9	78.4	961/721(1C)	1000 /500	0.037/0.07	This work
S/VCM	1.5-1.6	55.9	1006(1C)	100	0.84	[1]
S@G/G- V ₂ O ₃	3.6	78.3	1203(0.2C)	70	0.26	[2]
S@3VO ₂ 1VN/G	2.8	61.8	~807(1C)	100	0.36	[3]
VO ₂ HS@S	1.64	71	576(1C)	200	0.12	[4]
VO ₂ @rGO/S	1.5	76.1	1071 (1C)	200	0.14	[5]
VO ₂ /G/S	1.4~2.0	70.0	860(2C)	200	0.14	[6]
VO ₂ (P)- NCNT/S	4.8	-	~1000(1C)	200	0.09	[7]
S-V ₂ O ₃	1	66	~900(0.2C)	160	0.2	[8]
VO ₂ (p)- V ₂ C/S	4.8	72.7	~1250(0.2C)	200	0.3	[9]
VO ₂ @S	~1.5	67.2	1061(1C)	200	0.26	[10]

Table S2^{\dagger} Comparation of the electrochemical performance of V₂O₃@C/S with the reported literatures.

Components	Before cycle		After cycle		
	V ₂ O ₃ @C/S	V ₂ O ₃ /C/S	V ₂ O ₃ @C/S	V2O3/C/S	
RΩ (Ω)	4.40	3.72	4.47	3.80	
R _s (Ω)	2.82	9.53	1.81	2.62	
R_{ct} (Ω)	35.75	76.06	13.90	41.43	
$\mathbf{R}_{\text{total}}$ ($\mathbf{\Omega}$)	42.97	89.31	20.18	47.85	

Table S3[†] EIS Fitting results of the two electrodes before and after cycling.

 $R_{total} = R_{\Omega} + R_s + R_{ct}$

References

[1] R. Tang, X. Li, Z. Ding and L. Zhang, RSC Adv., 2016, 6, 65162-65170.

[2] Y. Song, W. Zhao, N. Wei, L. Zhang, F. Ding, Z. Liu and J. Sun, Nano Energy, 2018, 53, 432-439.

[3] Y. Song, W. Zhao, L. Kong, L. Zhang, X. Zhu, Y. Shao, F. Ding, Q. Zhang, J. Sun and Z. Liu, Energ. Environ. Sci., 2018, **11**, 2620-2630.

[4] L. Zhou, L. Yao, S. Li, J. Zai, S. Li, Q. He, K. He, X. Li, D. Wang and X. Qian, J. Mater. Chem. A, 2019, 7, 3618-3623.

[5] S. Li, Y. Cen, Q. Xiang, M.K. Aslam, B. Hu, W. Li, Y. Tang, Q. Yu, Y. Liu and C. Chen, J. Mater. Chem. A, 2019, 7, 1658-1668.

[6] Y. Song, W. Zhao, X. Zhu, L. Zhang, Q. Li, F. Ding, Z. Liu and J. Sun, ACS Appl. Mater. Inter., 2018, **10**, 15733-15741.

[7] S. Wang, J. Liao, X. Yang, J. Liang, Q. Sun, J. Liang, F. Zhao, A. Koo, F. Kong, Y. Yao, X. Gao,

M. Wu, S. Yang, R. Li and X. Sun, Nano Energy, 2019, 57, 230-240.

[8] M. Zhu, S. Li, J. Liu and B. Li, Appl. Surf. Sci., 2019, 473, 1002-1008.

[9] Z. Wang, K. Yu, Y. Feng, R. Qi, J. Ren and Z. Zhu, ACS Appl. Mater. Inter., 2019, **11**, 44282-44292.

[10] D. Wang, S. Zhao, F. Li, L. He, Y. Zhao, H. Zhao, Y. Liu, Y. Wei and G. Chen, ChemSusChem, 2019, **12**, 4671-4678.