Electronic Supplementary Information

Realization of High-Quality Optical Nanoporous Gradient-Index Filters by Optimal Combination of Anodization Conditions

Cheryl Suwen Law^{a,b,c}, Siew Yee Lim^{a,b,c}, Lina Liu^{a,d,e}, Andrew D. Abell^{*b,c,f}, Lluis F. Marsal^{*g} and Abel Santos^{*a,b,c}

^aSchool of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia.

^bInstitute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia. ^cARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia 5005, Australia.

^dState key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.

^eCollege of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.

^fDepartment of Chemistry, The University of Adelaide, Adelaide, South Australia 5005 Adelaide, Australia.

^gDepartment of Electronic, Electric, and Automatics Engineering, University Rovira i Virgili, Tarragona, Tarragona 43007, Spain.

*E-Mails: andrew.abell@adelaide.edu.au ; lluis.marsal@urv.cat ; abel.santos@adelaide.edu.au

Table of Contents

Fig. S1: Effective medium assessment of NAA-GIFs as a function of J and t_{an} S-3
Fig. S2: Transmission spectra of NAA-GIFs produced by SPA under various T_{an} and $[H_2SO_4]$ for $t_{an} = 10$
hS-4
Fig. S3: Transmission spectra of NAA-GIFs produced by SPA under various T_{an} and $[H_2SO_4]$ for $t_{an} = 15$
hS-4
Fig. S4: Transmission spectra of NAA-GIFs produced by SPA under various T_{an} and $[H_2SO_4]$ for t_{an} = 20
hS-5
Fig. S5: FEG-SEM images of NAA films produced with varying anodization current density (J) and
anodization time (<i>t_{an}</i>)S-9
Table S1: Equations of different parameters for ANOVA tableS-7

Fig. S1. Assessment of effective medium of NAA films produced with varying J and t_{an} . (a) Schematic illustration showing the correlation between nanopore geometry and effective medium in NAA films, with FEG-SEM images showing top and cross-sectional views of a representative NAA film (scale bar = 500 nm – top and scale bar = 1 µm – cross-section). (b) Schematic of set-up used to acquire the reflection spectrum of NAA films. (c) Effective optical thickness (OT_{eff}) of NAA films produced with varying J = 0.280-1.120 mA cm⁻² and $t_{an} = 0-20$ h at varying angle of incidence ($\vartheta = 15^{\circ}$, 25°, 35° and 45°).

Fig. S2. Full transmission spectra and magnified views of the characteristic photonic stopband (PSB) of NAA-GIFs produced by SPA with varying $T_{an} = -2-2$ °C and $[H_2SO_4] = 1.0-2.5$ M for $t_{an} = 10$ h.

Fig. S3. Full transmission spectra and magnified views of the characteristic photonic stop band (PSB) of NAA-GIFs produced by SPA with varying $T_{an} = -2-2$ °C and $[H_2SO_4] = 1.0-2.5$ M for $t_{an} = 15$ h.

Fig. S4. Full transmission spectra and magnified views of the characteristic photonic stop band (PSB) of NAA-GIFs produced by SPA with varying $T_{an} = -2-2$ °C and $[H_2SO_4] = 1.0-2.5$ M for $t_{an} = 20$ h.

Fig. S5. SEM images of NAA films produced with varying anodization current density (*J*) and anodization time (t_{an}) . (a) Cross-sectional view of NAA films showing the length of pore grown at different *J* (0.280–1.120 mA cm⁻²) (scale bar = 1 µm) (b) Top view of NAA films produced as a function of *J* and t_{an} (0–20 h) (scale bar = 500 nm).

The ANOVA table (**Table 3**) was calculated using the equations outlined in **Table S1**, where *SS* is the sum of squares of the corresponding source, *DF* is the degree of freedom of such source, *MS* is the mean square of corresponding source, F_0 is the test statistic of that source, a, b and c are the total number of levels corresponding to t_{an} , T_{an} and $[H_2SO_4]$, respectively, and n is the total number of replications.

The hypotheses H_0 , H_1 , H_2 , H_3 , H_4 , H_5 and H_6 were evaluated based on the comparison between F_0 value calculated from ANOVA table and the value of F-distribution for a significance level of 95% (i.e. 0.05) with the corresponding value of *DF* (Source) and *DF* (Error) (i.e. $F_{(0.05, DF (Source), DF (Error)})$. In this way, the tested null hypothese (i.e. H_0 , H_1 , H_2 , H_3 , H_4 , H_5 and H_6) associated with cases i–vii were rejected if:

- i) $H_0: F_{0-tan} \ge F_{(0.05, DF(tan), DF(Error))}$
- ii) $H_1: F_{0-Tan} \ge F_{(0.05, DF(Tan), DF(Error))}$
- iii) $H_2: F_{0-[H2SO4]} \ge F_{(0.05, DF([H2SO4]), DF(Error))}$
- iv) $H_3: F_{0-tan.Tan} \ge F_{(0.05, DF(tan.Tan), DF(Error)}$
- v) $H_4: F_{0-tan.[H2SO4]} \ge F_{(0.05, DF (tan.[H2SO4]), DF (Error)}$
- vi) $H_5: F_{0-Tan.[H2SO4]} \ge F_{(0.05, DF (Tan \cdot [H2SO4]), DF (Error)}$
- vii) $H_6: F_{0-tan.Tan.[H2SO4]} \ge F_{(0.05, DF (tan.Tan.[H2SO4]), DF (Error)}$

Considering three-factor analysis of variance model in general form:

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl} \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, b \\ k = 1, 2, \dots, c \\ l = 1, 2, \dots, n \end{cases}$$

In this study, α , β and γ represent t_{an} , T_{an} , [H₂SO₄], respectively.

Table S1. Equations of different parameters for ANOVA table.

Source	SS	DF	MS	Fo
t _{an}	$SS_{t_{an}} = \frac{1}{bcn} \sum_{i=1}^{a} y_{i}^2 - \frac{y_{}^2}{abcn}$	a – 1	$MS_{t_{an}} = \frac{SS_{t_{an}}}{a-1}$	$F_{0-t_{an}} = \frac{MS_{t_{an}}}{MS_E}$
T _{an}	$SS_{T_{an}} = \frac{1}{acn} \sum_{j=1}^{b} y_{.j.}^{2} - \frac{y_{}^{2}}{abcn}$	b - 1	$MS_{T_{an}} = \frac{SS_{T_{an}}}{b-1}$	$F_{0-T_{an}} = \frac{MS_{T_{an}}}{MS_E}$
[H ₂ SO ₄]	$SS_{[H_2SO_4]} = \frac{1}{abn} \sum_{k=1}^{c} y_{k.}^2 - \frac{y_{}^2}{abcn}$	<i>c</i> – 1	$MS_{[H_2SO_4]} = \frac{SS_{[H_2SO_4]}}{c-1}$	$F_{0-[H_2SO_4]} = \frac{MS_{[H_2SO_4]}}{MS_E}$
t _{an} . T _{an}	$SS_{tan.Tan}$ $= \frac{1}{cn} \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}^{2} - \frac{y_{}^{2}}{abcn} - SS_{tan} - SS_{Tan}$ $= SS_{Subtotals(tan.Tan)} - SS_{tan} - SS_{Tan}$	(a-1)(b-1)	$MS_{t_{an}:T_{an}} = \frac{SS_{t_{an}:T_{an}}}{(a-1)(b-1)}$	$F_{0-t_{an}.T_{an}} = \frac{MS_{t_{an}.T_{an}}}{MS_E}$

t _{an} .[H ₂ SO ₄]	$SS_{t_{an}}[H_2SO_4]$	(a-1)(c-1)	$MS_{t_{an}\cdot[H_2SO_4]}$	$F_{0-t_{an}\cdot[H_2SO_4]}$
	$= \frac{1}{bn} \sum_{i=1}^{a} \sum_{k=1}^{c} y_{i.k.}^{2} - \frac{y_{}^{2}}{abcn} - SS_{t_{an}} - SS_{[H_{2}SO_{4}]}$		$=\frac{SS_{t_{an}.[H_2SO_4]}}{(a-1)(c-1)}$	$=\frac{MS_{t_{an}\cdot[H_2SO_4]}}{MS_E}$
	$= SS_{Subtotals (t_{an} \cdot [H_2SO_4])} - SS_{t_{an}} - SS_{[H_2SO_4]}$			
T_{an} .[H_2SO_4]	$SS_{T_{an}\cdot[H_2SO_4]}$	(b-1)(c-1)	$MS_{T_{an}\cdot[H_2SO_4]}$	$F_{0-T_{an}\cdot[H_2SO_4]}$
	$= \frac{1}{an} \sum_{j=1}^{b} \sum_{k=1}^{c} y_{.jk.}^{2} - \frac{y_{}^{2}}{abcn} - SS_{T_{an}} - SS_{[H_{2}SO_{4}]}$		$=\frac{SS_{T_{an}\cdot[H_2SO_4]}}{(b-1)(c-1)}$	$=\frac{MS_{T_{an}\cdot[H_2SO_4]}}{MS_E}$
	$= SS_{Subtotals (T_{an} \cdot [H_2 SO_4])} - SS_{T_{an}} - SS_{[H_2 SO_4]}$			
$t_{an}.T_{an}.[H_2SO_4]$	$SS_{t_{an}.T_{an}.[H_2SO_4]}$	(a-1)(b-1)(c-1)	$MS_{t_{an}.T_{an}.[H_2SO_4]}$	$F_{0-t_{an}.T_{an}.[H_2SO_4]}$
	$= \frac{1}{n} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} y_{ijk.}^{2} - \frac{y_{}^{2}}{abcn} - SS_{tan} - SS_{Tan}$		$=\frac{SS_{t_{an}.T_{an}.[H_2SO_4]}}{(a-1)(b-1)(c-1)}$	$=\frac{MS_{t_{an}.T_{an}.[H_2SO_4]}}{MS_E}$
	$-SS_{[H_2SO_4]} - SS_{t_{an}\cdot T_{an}} - SS_{t_{an}\cdot [H_2SO_4]}$			
	$-SS_{T_{an}\cdot[H_2SO_4]}$			
	$= SS_{Subtotals (t_{an} \cdot T_{an} \cdot [H_2 SO_4])} - SS_{t_{an}} - SS_{T_{an}}$			
	$-SS_{[H_2SO_4]} - SS_{tan\cdot Tan} - SS_{tan\cdot [H_2SO_4]}$			
	$-SS_{T_{an}\cdot[H_2SO_4]}$			
Total	$SS_{T} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} \sum_{l=1}^{n} y_{ijkl}^{2} - \frac{y_{}^{2}}{abcn}$	abcn — 1		
Error	$SS_E = SS_T - SS_{Subtotals} (t_{an}.T_{an}.[H_2SO_4])$	abc (n − 1)	$MS_E = \frac{SS_E}{abc(n-1)}$	