High Throughput Screening of M₃C₂ MXenes for Efficient CO₂ Reduction Conversion into Hydrocarbon Fuels

Yi Xiao ^{a*}, Weibin Zhang ^b

^a Institute of Materials Science, TU Darmstadt, 64287 Darmstadt, Germany

^b School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, P. R. China

E-mail addresses: yixiao@tmm.tu-darmstadt.de;

THERMOCHEMISTRY ANALYSIS

The fundamental thermodynamic equation defined as follow:

$$G = H - TS$$

Under the standard DFT calculation conditions (T = 0 K), so the TS is almost negligible. Actually, when the temperatures greater than 0 K and constant pressure, that means normal temperature and pressure conditions (here T = 298.15 K), zero point energy (ZPE) corrections can be included to finally obtain, enthalpy for a given temperature can be expressed in terms of $G=H^0+ZPE-TS$ (2)

(1)

In addition, the entropy term can be calculated as the sum of the translational, rotational, vibrational, and electronic contributions as to:

$$S = S_t + S_r + S_v + S_e \tag{3}$$

and also, the total corrections can be included to finally obtain:

$$G=H_0+ZPE-T(S_t+S_r+S_v+S_e)$$
(4)

When computing the change of Gibbs free energy variation between two different states named a and b by applied eqn. (4), So ΔG results in:

$$\Delta G = H_b^0 + ZPE_b - T(S_{t,b} + S_{r,b} + S_{v,b} + S_{e,b}) - H_a^0 + ZPE_a - T(S_{t,a} + S_{r,a} + S_{v,a} + S_{e,a})$$
(5)

Or simply format:

$$\Delta G = \Delta H_{ba}^0 + \Delta ZPE_{ba} - T\Delta S_{ba} \tag{6}$$

$$\Delta G(298.15 \text{ K}) = \Delta E_{\text{DFT}} + \Delta ZPE + \Delta H(T) - TS(T)$$
⁽⁷⁾

$$\Delta H(T) = H(T) - H(0) = \int_0^T C_p dT$$
(8)

$$\Delta ZPE = 1/2h\nu \tag{9}$$

$$S(T) = S_t + S_r + S_v + S_e$$
(10)

$$H(T) = H(0) + PV \tag{11}$$

For the last equation, there are some approximations can be applied for entropy as reported in ref. 1 and ref. 2 (see Supporting Information).

1. At the fundamental electronic level: $S_e \approx 0$

2. For gases, translational, rotational, and vibrational entropy terms have contributions that might not be neglected, and therefore: $S = S_t + S_r + S_v$

3. For solids and adsorbates, both $S_t \approx 0$ and $S_r \approx 0,$ and therefore: $S = S_v$

Since these thermal corrections for the enthalpy have been taken into account for the ΔG calculation.

 η =U₀-U is the overpotential. In other words, adsorbed hydrocarbon and hydroxide on the MXene catalysts surface are thermodynamic for the oxygen reduction process, and the activation energy for the total process at the maximum cell voltage U₀ 0.17 V is at least Δ G= -1.35 eV. This value is, indeed, close to the experimentally observed over potential.

Table S1. Schematic energy profiles for the CO₂RR for all the favorable pathways on Mo₃C₂ surface. (b) Pathway 2, (c) Pathway 3, and (d) Pathway 4 on M₃C₂ surface. The corresponding formula with Gibbs free energy change is shown in eV. Blue and black texts represent spontaneous and nonspontaneous reactions (in eV), respectively (bottom).

			(/			
System	$U_L(CO_2)$	UL(H ₂)	$U_L(CO_2)$ - $U_L(H_2)$	System	$U_L(CO_2)$	$U_L(H_2)$	$U_L(CO_2)$ - $U_L(H_2)$
Sc_3C_2	-2.63	0.13	-2.76	Nb_3C_2	-0.51	-1.12	0.61
Ti_3C_2	-0.01	0.04	-0.05	Mo_3C_2	-0.91	-0.34	-0.57
V_3C_2	-0.47	-0.08	-0.39	Mo ₂ TiC ₂	0.49	-0.21	0.70
Cr_3C_2	-0.24	-0.46	0.23	Hf_3C_2	-2.86	-0.87	-1.99
Y_3C_2	-1.99	0.42	-2.40	Ta ₃ C ₂	0.00	0.04	-0.04
Zr_3C_2	-2.73	-1.11	-1.62	W_3C_2	0.66	-0.52	1.18

Table S2. Zero-point energy (ZPE, in eV) and entropy corrections (TS, in eV) at T = 298 K for gas and liquid phase molecules and adsorbed species. The unit for energy is eV. Intermediates species of energy profiles for the CO₂RR for all the favorable pathways on M₃C₂ surface.

Species	ΔΖΕΡ	ΔU(T)	ΔH(T)	$\Delta G(T)$	$\mathbf{T} \times \Delta \mathbf{S}$
CO ₂	0.306911	0.379147	0.404839	-0.303304	0.708143
HCO ₂	0.538326	0.621134	0.646826	-0.150702	0.797528
H_2CO_2	0.592443	0.708158	0.73385	-0.211201	0.945051
H ₂ COOH	1.076272	1.178516	1.204208	0.335541	0.868667
H_2CO	0.704777	0.783085	0.808777	0.079215	0.729562
H ₃ CO	0.938608	1.020442	1.046134	0.296878	0.749256
0	0.000132	0.038538	0.06423	-0.396455	0.460685
OH	0.240325	0.304554	0.330246	-0.229766	0.560012
H ₂ O	0.572122	0.649304	0.674996	0.050668	0.624328
СООН	0.52972	0.621317	0.647009	-0.173601	0.82061
НСООН	0.824796	0.913339	0.939031	0.10034	0.838691
НСО	0.329327	0.408534	0.434226	-0.289523	0.723749
H ₂ COH	0.984677	1.079098	1.104789	0.313084	0.791705
H ₃ COH	1.344719	1.447594	1.473286	0.62377	0.849516
CH ₃	0.801679	0.883117	0.908809	0.274153	0.634656
CH_4	0.974949	1.102064	1.127756	0.390872	0.736884
OOH	0.096632	0.160967	0.186659	-0.447249	0.633908
O_2	0.096632	0.160967	0.186659	-0.447249	0.633908
H_2	0.260748	0.324978	0.35067	-0.080206	0.430876
СО	0.172385	0.236615	0.262307	-0.375846	0.638153

Table S3. Zero-point energy (ZPE, in eV) and entropy corrections (TS, in eV) at T = 298 K for different slabs. The unit for energy is eV of reaction pathway followed for the CO₂ conversion mechanism into CH₄ catalyzed by M₃C₂.

MXene	Temperature	S (eV/K)	$T\Delta S$	ΔΖΡΕ	ΔΗ	ΔG
Cr ₃ C ₂	298.15	0.0091	2.71452	2.63726	1.44383	1.36657
Hf_3C_2	298.15	0.01047	3.12196	2.92359	1.58317	1.3848
Mn ₃ C ₂	298.15	0.00844	2.51732	2.57725	1.36245	1.42237
Mo ₃ C ₂	298.15	0.00946	2.8194	2.14598	1.3967	0.72329
Mo ₂ TiC ₂	298.15	0.00954	2.84379	2.83391	1.52667	1.51679
Nb ₃ C ₂	298.15	0.00905	2.6987	2.92903	1.48513	1.71547
Sc_3C_2	298.15	0.0081	2.41425	2.44873	1.37661	1.41109
Ta ₃ C ₂	298.15	0.01086	3.23681	2.80325	1.62938	1.19583
Ti_3C_2	298.15	0.0069	2.05705	3.38021	1.23947	2.56263
V_3C_2	298.15	0.00799	2.38314	3.11869	1.37204	2.10759
W_3C_2	298.15	0.0082	2.44585	1.88433	1.13679	0.57528
Y_3C_2	298.15	0.01111	3.31374	1.96627	1.6658	0.31832
Zr_3C_2	298.15	0.00939	2.80056	3.01031	1.47676	1.68651

Table S4. Gibbs free energies at 298.15 K by adding entropic (TS) and zero-point energy (ZPE) to the fluid phase molecules corrections to adsorbed species corrections applied), in eV, corresponding to the different intermediates along the CO_2 conversion pathway catalysed by M_3C_2 MXene.

Path1	MXene	Sc_3C_2	Ti ₃ C ₂	V_3C_2	Cr ₃ C ₂	Y_3C_2	Zr_3C_2	Nb ₃ C ₂	Mo ₃ C ₂	Mo ₂ TiC ₂	Hf_3C_2	Ta ₃ C ₂	W_3C_2
Surface	e- transferred	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO_2	0	-2.63	-0.01	-0.47	-0.24	-1.99	-2.73	-0.51	-0.91	0.49	-2.86	0.00	0.66
HCO_2	1	-2.65	-2.45	-1.41	-4.54	-1.94	-2.15	-1.58	-0.91	-0.87	-2.00	-1.43	-0.74
H_2CO_2	2	-4.13	-3.74	-2.01	-4.23	-3.29	-3.65	-2.48	-1.14	-1.18	-3.59	-2.42	-1.05
H ₂ COO H	3	-2.55	-1.86	-1.42	-2.30	-2.00	-2.60	-1.38	-1.01	-0.84	-2.52	-1.44	-1.26
H ₂ CO	4	-0.73	-0.95	-0.80	-1.38	-0.40	-0.72	-0.84	-0.54	-0.57	-0.76	-1.03	-0.63
H ₃ CO	5	-3.76	-2.83	-2.19	-2.53	-3.20	-3.53	-2.37	-1.82	-1.64	-3.79	-2.49	-2.04
0	6	-4.96	-3.37	-3.16	-3.20	-4.34	-5.22	-3.23	-2.52	-2.08	-2.84	-3.44	-2.87
OH	7	-3.99	-3.96	-3.32	-3.60	-3.45	-3.75	-3.51	-3.03	-2.83	-3.79	-3.68	-3.25
H_2O	8	-3.12	-3.20	-3.16	-3.12	-2.88	-3.09	-3.18	-3.13	-3.12	-3.13	-3.27	-3.20
													-
Path2	MXene	Sc ₃ C ₂	Ti ₃ C ₂	V_3C_2	Cr ₃ C ₂	Y_3C_2	Zr_3C_2	Nb ₃ C ₂	Mo ₃ C ₂	Mo ₂ TiC ₂	Hf_3C_2	Ta ₃ C ₂	W_3C_2
Path2 Surface	MXene e ⁻ transferred	Sc ₃ C ₂ 0.00	Ti ₃ C ₂ 0.00	V ₃ C ₂ 0.00	Cr ₃ C ₂ 0.00	Y ₃ C ₂ 0.00	Zr ₃ C ₂ 0.00	Nb ₃ C ₂ 0.00	Mo ₃ C ₂ 0.00	Mo ₂ TiC ₂ 0.00	Hf ₃ C ₂ 0.00	Ta ₃ C ₂ 0.00	W ₃ C ₂ 0.00
Path2 Surface CO ₂	MXene e ⁻ transferred 0	Sc ₃ C ₂ 0.00 -2.63	Ti ₃ C ₂ 0.00 -0.01	V ₃ C ₂ 0.00 -0.47	Cr ₃ C ₂ 0.00 -0.24	Y ₃ C ₂ 0.00 -1.99	Zr ₃ C ₂ 0.00 -2.73	Nb ₃ C ₂ 0.00 -0.51	Mo ₃ C ₂ 0.00 -0.91	Mo ₂ TiC ₂ 0.00 0.49	Hf ₃ C ₂ 0.00 -2.86	Ta ₃ C ₂ 0.00 0.00	W ₃ C ₂ 0.00 0.66
Path2 Surface CO ₂ COOH	MXene e- transferred 0 1	Sc ₃ C ₂ 0.00 -2.63 -0.17	Ti ₃ C ₂ 0.00 -0.01 -0.27	V ₃ C ₂ 0.00 -0.47 -0.35	Cr ₃ C ₂ 0.00 -0.24 -0.90	Y ₃ C ₂ 0.00 -1.99 0.20	Zr ₃ C ₂ 0.00 -2.73 -0.83	Nb ₃ C ₂ 0.00 -0.51 -0.14	Mo ₃ C ₂ 0.00 -0.91 -0.43	Mo ₂ TiC ₂ 0.00 0.49 -0.39	Hf ₃ C ₂ 0.00 -2.86 0.22	Ta ₃ C ₂ 0.00 0.00 -0.77	W ₃ C ₂ 0.00 0.66 -0.48
Path2 Surface CO ₂ COOH CO	MXene e- transferred 0 1 2	Sc ₃ C ₂ 0.00 -2.63 -0.17 -2.14	Ti ₃ C ₂ 0.00 -0.01 -0.27 -2.32	V ₃ C ₂ 0.00 -0.47 -0.35 -0.66	Cr ₃ C ₂ 0.00 -0.24 -0.90 -3.47	Y ₃ C ₂ 0.00 -1.99 0.20 -1.77	Zr ₃ C ₂ 0.00 -2.73 -0.83 -2.13	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.46	Mo ₃ C ₂ 0.00 -0.91 -0.43 -0.53	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -0.66	Hf ₃ C ₂ 0.00 -2.86 0.22 -2.39	Ta ₃ C ₂ 0.00 0.00 -0.77 -2.10	W ₃ C ₂ 0.00 0.66 -0.48 -0.89
Path2 Surface CO ₂ COOH CO CHO	MXene e-transferred 0 1 2 3	Sc ₃ C ₂ 0.00 -2.63 -0.17 -2.14 -2.72	Ti ₃ C ₂ 0.00 -0.01 -0.27 -2.32 -1.94	V ₃ C ₂ 0.00 -0.47 -0.35 -0.66 -0.49	Cr ₃ C ₂ 0.00 -0.24 -0.90 -3.47 -1.27	Y ₃ C ₂ 0.00 -1.99 0.20 -1.77 -1.69	Zr ₃ C ₂ 0.00 -2.73 -0.83 -2.13 -1.45	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.46 -2.50	Mo ₃ C ₂ 0.00 -0.91 -0.43 -0.53 -1.09	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -0.66 -0.43	Hf ₃ C ₂ 0.00 -2.86 0.22 -2.39 -3.50	Ta ₃ C ₂ 0.00 0.00 -0.77 -2.10 -1.59	W ₃ C ₂ 0.00 0.66 -0.48 -0.89 -1.20
Path2 Surface CO ₂ COOH CO CHO H ₂ CO	MXene e- transferred 0 1 2 3 4	Sc ₃ C ₂ 0.00 -2.63 -0.17 -2.14 -2.72 -0.73	Ti ₃ C ₂ 0.00 -0.01 -0.27 -2.32 -1.94 -0.95	V ₃ C ₂ 0.00 -0.47 -0.35 -0.66 -0.49 -0.80	Cr ₃ C ₂ 0.00 -0.24 -0.90 -3.47 -1.27 -1.38	Y ₃ C ₂ 0.00 -1.99 0.20 -1.77 -1.69 -0.40	Zr ₃ C ₂ 0.00 -2.73 -0.83 -2.13 -1.45 -0.72	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.46 -2.50 -0.84	Mo ₃ C ₂ 0.00 -0.91 -0.43 -0.53 -1.09 -0.54	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -0.66 -0.43 -0.57	Hf ₃ C ₂ 0.00 -2.86 0.22 -2.39 -3.50 -0.76	Ta ₃ C ₂ 0.00 0.00 -0.77 -2.10 -1.59 -1.03	W ₃ C ₂ 0.00 0.66 -0.48 -0.89 -1.20 -0.63
Path2 Surface CO2 COOH CO CHO H2CO H2COH	MXene e transferred 0 1 2 3 4 5	Sc ₃ C ₂ 0.00 -2.63 -0.17 -2.14 -2.72 -0.73 -1.41	Ti ₃ C ₂ 0.00 -0.01 -0.27 -2.32 -1.94 -0.95 -1.43	V ₃ C ₂ 0.00 -0.47 -0.35 -0.66 -0.49 -0.80 -0.68	Cr ₃ C ₂ 0.00 -0.24 -0.90 -3.47 -1.27 -1.38 -1.54	Y ₃ C ₂ 0.00 -1.99 0.20 -1.77 -1.69 -0.40 -0.90	Zr ₃ C ₂ 0.00 -2.73 -0.83 -2.13 -1.45 -0.72 -1.11	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.46 -2.50 -0.84 -1.10	Mo ₃ C ₂ 0.00 -0.91 -0.43 -0.53 -1.09 -0.54 -0.89	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -0.66 -0.43 -0.57 -0.56	Hf ₃ C ₂ 0.00 -2.86 0.22 -2.39 -3.50 -0.76 -1.02	Ta ₃ C ₂ 0.00 0.00 -0.77 -2.10 -1.59 -1.03 -1.14	W ₃ C ₂ 0.00 0.66 -0.48 -0.89 -1.20 -0.63 -1.05
Path2 Surface CO2 COOH CO H2CO H2COH H2COH	MXene e- transferred 0 1 2 3 4 5 6	Sc ₃ C ₂ 0.00 -2.63 -0.17 -2.14 -2.72 -0.73 -1.41 -1.05	Ti ₃ C ₂ 0.00 -0.01 -0.27 -2.32 -1.94 -0.95 -1.43 -1.11	V ₃ C ₂ 0.00 -0.47 -0.35 -0.66 -0.49 -0.80 -0.68 -1.28	Cr ₃ C ₂ 0.00 -0.24 -0.90 -3.47 -1.27 -1.38 -1.54 -1.88	Y ₃ C ₂ 0.00 -1.99 0.20 -1.77 -1.69 -0.40 -0.90 -1.08	Zr ₃ C ₂ 0.00 -2.73 -0.83 -2.13 -1.45 -0.72 -1.11 -1.16	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.46 -2.50 -0.84 -1.10 -1.32	Mo ₃ C ₂ 0.00 -0.91 -0.43 -0.53 -1.09 -0.54 -0.89 -1.20	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -0.66 -0.43 -0.57 -0.56 -1.29	Hf ₃ C ₂ 0.00 -2.86 0.22 -2.39 -3.50 -0.76 -1.02 -1.16	Ta ₃ C ₂ 0.00 -0.77 -2.10 -1.59 -1.03 -1.14 -1.27	W ₃ C ₂ 0.00 0.66 -0.48 -0.89 -1.20 -0.63 -1.05 -1.09
Path2 Surface CO2 COOH CO CHO H2CO H2COH H3COH CH3	MXene e transferred 0 1 2 3 4 5 6 7	Sc ₃ C ₂ 0.00 -2.63 -0.17 -2.14 -2.72 -0.73 -1.41 -1.05 -1.80	Ti ₃ C ₂ 0.00 -0.01 -0.27 -2.32 -1.94 -0.95 -1.43 -1.11 -1.92	V ₃ C ₂ 0.00 -0.47 -0.35 -0.66 -0.49 -0.80 -0.68 -1.28 -1.86	Cr ₃ C ₂ 0.00 -0.24 -0.90 -3.47 -1.27 -1.38 -1.54 -1.88 -1.50	Y ₃ C ₂ 0.00 -1.99 0.20 -1.77 -1.69 -0.40 -0.90 -1.08 -1.47	Zr ₃ C ₂ 0.00 -2.73 -0.83 -2.13 -1.45 -0.72 -1.11 -1.16 -1.80	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.46 -2.50 -0.84 -1.10 -1.32 -1.76	Mo ₃ C ₂ 0.00 -0.91 -0.43 -0.53 -1.09 -0.54 -0.89 -1.20 -2.00	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -0.66 -0.43 -0.57 -0.56 -1.29 -1.78	Hf ₃ C ₂ 0.00 -2.86 0.22 -2.39 -3.50 -0.76 -1.02 -1.16 -2.86	Ta ₃ C ₂ 0.00 0.00 -0.77 -2.10 -1.59 -1.03 -1.14 -1.27 -1.86	W ₃ C ₂ 0.00 0.66 -0.48 -0.89 -1.20 -0.63 -1.05 -1.09 -2.18
Path2 Surface CO2 COOH CO H2CO H2COH H3COH CH3 CH4	MXene e transferred 0 1 2 3 4 5 6 7 8	Sc ₃ C ₂ 0.00 -2.63 -0.17 -2.14 -2.72 -0.73 -1.41 -1.05 -1.80 -2.28	Ti ₃ C ₂ 0.00 -0.01 -0.27 -2.32 -1.94 -0.95 -1.43 -1.11 -1.92 -2.34	V ₃ C ₂ 0.00 -0.47 -0.35 -0.66 -0.49 -0.80 -0.68 -1.28 -1.28 -1.86 -2.49	Cr ₃ C ₂ 0.00 -0.24 -0.90 -3.47 -1.27 -1.38 -1.54 -1.88 -1.50 -2.48	Y ₃ C ₂ 0.00 -1.99 0.20 -1.77 -1.69 -0.40 -0.90 -1.08 -1.47 -2.26	Zr ₃ C ₂ 0.00 -2.73 -0.83 -2.13 -1.45 -0.72 -1.11 -1.16 -1.80 -2.22	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.46 -2.50 -0.84 -1.10 -1.32 -1.76 -2.34	Mo ₃ C ₂ 0.00 -0.91 -0.43 -0.53 -1.09 -0.54 -0.89 -1.20 -2.00 -2.44	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -0.66 -0.43 -0.57 -0.56 -1.29 -1.78 -2.51	Hf ₃ C ₂ 0.00 -2.86 0.22 -2.39 -3.50 -0.76 -1.02 -1.16 -2.86 -2.21	$\begin{array}{c} Ta_{3}C_{2}\\ 0.00\\ 0.00\\ -0.77\\ -2.10\\ -1.59\\ -1.03\\ -1.14\\ -1.27\\ -1.86\\ -2.37\end{array}$	W ₃ C ₂ 0.00 0.66 -0.48 -0.89 -1.20 -0.63 -1.05 -1.09 -2.18 -1.49

Surface	e- transferred	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO_2	0	-2.63	-0.01	-0.47	-0.24	-1.99	-2.73	-0.51	-0.91	0.49	-2.86	0.00	0.66
HCO ₂	1	-2.65	-2.45	-1.41	-4.54	-1.94	-2.15	-1.58	-0.91	-0.87	-2.00	-1.43	-0.74
H_2CO_2	2	-4.13	-3.74	-2.01	-4.23	-3.29	-3.65	-2.48	-1.14	-1.18	-3.59	-2.42	-1.05
H ₂ COO H	3	-2.55	-1.86	-1.42	-2.30	-2.00	-2.60	-1.38	-1.01	-0.84	-2.52	-1.44	-1.26
H_2CO	4	-0.73	-0.95	-0.80	-1.38	-0.40	-0.72	-0.84	-0.54	-0.57	-0.76	-1.03	-0.63
H ₃ CO	5	-3.76	-2.83	-2.19	-2.53	-3.20	-3.53	-2.37	-1.82	-1.64	-3.79	-2.49	-2.04
H ₃ COH	6	-1.05	-1.11	-1.28	-1.88	-1.08	-1.16	-1.32	-1.20	-1.29	-1.16	-1.27	-1.09
CH ₃	7	-1.80	-1.92	-1.86	-3.50	-1.47	-1.80	-1.76	-2.00	-1.78	-2.86	-1.86	-2.18
CH_4	8	-2.28	-2.34	-2.49	-2.48	-2.26	-2.22	-2.34	-2.44	-2.51	-2.21	-2.37	-1.49
Path4	MXene	Sc_3C_2	Ti ₃ C ₂	V_3C_2	Cr_3C_2	Y_3C_2	Zr_3C_2	Nb_3C_2	Mo ₃ C ₂	Mo ₂ TiC ₂	Hf_3C_2	Ta ₃ C ₂	W_3C_2
Path4 Surface	MXene e ⁻ transferred	Sc ₃ C ₂ 0.00	Ti ₃ C ₂ 0.00	V ₃ C ₂ 0.00	Cr ₃ C ₂ 0.00	Y ₃ C ₂ 0.00	Zr ₃ C ₂ 0.00	Nb ₃ C ₂ 0.00	Mo ₃ C ₂ 0.00	Mo ₂ TiC ₂ 0.00	Hf ₃ C ₂ 0.00	Ta ₃ C ₂ 0.00	W ₃ C ₂ 0.00
Path4 Surface CO ₂	MXene e ⁻ transferred 0	Sc ₃ C ₂ 0.00 -2.63	Ti ₃ C ₂ 0.00 -0.01	V ₃ C ₂ 0.00 -0.47	Cr ₃ C ₂ 0.00 -0.24	Y ₃ C ₂ 0.00 -1.99	Zr ₃ C ₂ 0.00 -2.73	Nb ₃ C ₂ 0.00 -0.51	Mo ₃ C ₂ 0.00 -0.91	Mo ₂ TiC ₂ 0.00 0.49	Hf ₃ C ₂ 0.00 -2.86	Ta ₃ C ₂ 0.00 0.00	W ₃ C ₂ 0.00 0.66
Path4 Surface CO ₂ COOH	MXene e ⁻ transferred 0 1	Sc ₃ C ₂ 0.00 -2.63 -0.17	Ti ₃ C ₂ 0.00 -0.01 -0.27	V ₃ C ₂ 0.00 -0.47 -0.35	Cr ₃ C ₂ 0.00 -0.24 -0.90	Y ₃ C ₂ 0.00 -1.99 0.20	Zr ₃ C ₂ 0.00 -2.73 -0.83	Nb ₃ C ₂ 0.00 -0.51 -0.14	Mo ₃ C ₂ 0.00 -0.91 -0.43	Mo ₂ TiC ₂ 0.00 0.49 -0.39	Hf ₃ C ₂ 0.00 -2.86 0.22	Ta ₃ C ₂ 0.00 0.00 -0.77	W ₃ C ₂ 0.00 0.66 -0.48
Path4 Surface CO ₂ COOH CO	MXene e transferred 0 1 2	Sc ₃ C ₂ 0.00 -2.63 -0.17 -0.12	Ti ₃ C ₂ 0.00 -0.01 -0.27 -0.85	V ₃ C ₂ 0.00 -0.47 -0.35 -1.23	Cr ₃ C ₂ 0.00 -0.24 -0.90 -1.52	Y ₃ C ₂ 0.00 -1.99 0.20 0.18	Zr ₃ C ₂ 0.00 -2.73 -0.83 -0.54	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.13	Mo ₃ C ₂ 0.00 -0.91 -0.43 -1.28	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -1.49	Hf ₃ C ₂ 0.00 -2.86 0.22 -0.61	Ta ₃ C ₂ 0.00 0.00 -0.77 -1.37	W ₃ C ₂ 0.00 0.66 -0.48 -1.30
Path4 Surface CO ₂ COOH CO CHO	MXene e ⁻ transferred 0 1 2 3	Sc ₃ C ₂ 0.00 -2.63 -0.17 -0.12 -2.72	Ti ₃ C ₂ 0.00 -0.01 -0.27 -0.85 -1.94	V ₃ C ₂ 0.00 -0.47 -0.35 -1.23 -0.49	Cr ₃ C ₂ 0.00 -0.24 -0.90 -1.52 -1.27	Y ₃ C ₂ 0.00 -1.99 0.20 0.18 -1.69	Zr ₃ C ₂ 0.00 -2.73 -0.83 -0.54 -1.45	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.13 -2.50	Mo ₃ C ₂ 0.00 -0.91 -0.43 -1.28 -1.09	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -1.49 -0.43	Hf ₃ C ₂ 0.00 -2.86 0.22 -0.61 -3.50	Ta ₃ C ₂ 0.00 0.00 -0.77 -1.37 -1.59	W ₃ C ₂ 0.00 0.66 -0.48 -1.30 -1.20
Path4 Surface CO ₂ COOH CO CHO H ₂ CO	MXene e-transferred 0 1 2 3 4	Sc ₃ C ₂ 0.00 -2.63 -0.17 -0.12 -2.72 -0.73	Ti ₃ C ₂ 0.00 -0.01 -0.27 -0.85 -1.94 -0.95	V ₃ C ₂ 0.00 -0.47 -0.35 -1.23 -0.49 -0.80	Cr ₃ C ₂ 0.00 -0.24 -0.90 -1.52 -1.27 -1.38	Y ₃ C ₂ 0.00 -1.99 0.20 0.18 -1.69 -0.40	Zr ₃ C ₂ 0.00 -2.73 -0.83 -0.54 -1.45 -0.72	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.13 -2.50 -0.84	Mo ₃ C ₂ 0.00 -0.91 -0.43 -1.28 -1.09 -0.54	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -1.49 -0.43 -0.57	Hf ₃ C ₂ 0.00 -2.86 0.22 -0.61 -3.50 -0.76	Ta ₃ C ₂ 0.00 0.00 -0.77 -1.37 -1.59 -1.03	W ₃ C ₂ 0.00 0.66 -0.48 -1.30 -1.20 -0.63
Path4 Surface CO ₂ COOH CO CHO H ₂ CO H ₂ COH	MXene e transferred 0 1 2 3 4 5	Sc ₃ C ₂ 0.00 -2.63 -0.17 -0.12 -2.72 -0.73 -1.41	Ti ₃ C ₂ 0.00 -0.01 -0.27 -0.85 -1.94 -0.95 -1.43	V ₃ C ₂ 0.00 -0.47 -0.35 -1.23 -0.49 -0.80 -0.68	Cr ₃ C ₂ 0.00 -0.24 -0.90 -1.52 -1.27 -1.38 -1.54	Y ₃ C ₂ 0.00 -1.99 0.20 0.18 -1.69 -0.40 -0.90	Zr ₃ C ₂ 0.00 -2.73 -0.83 -0.54 -1.45 -0.72 -1.11	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.13 -2.50 -0.84 -1.10	Mo ₃ C ₂ 0.00 -0.91 -0.43 -1.28 -1.09 -0.54 -0.89	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -1.49 -0.43 -0.57 -0.56	Hf ₃ C ₂ 0.00 -2.86 0.22 -0.61 -3.50 -0.76 -1.02	Ta ₃ C ₂ 0.00 -0.07 -1.37 -1.59 -1.03 -1.14	W ₃ C ₂ 0.00 0.66 -0.48 -1.30 -1.20 -0.63 -1.05
Path4 Surface CO ₂ COOH CO CHO H ₂ CO H ₂ COH H ₃ COH	MXene e transferred 0 1 2 3 4 5 6	Sc ₃ C ₂ 0.00 -2.63 -0.17 -0.12 -2.72 -0.73 -1.41 -1.05	Ti ₃ C ₂ 0.00 -0.01 -0.27 -0.85 -1.94 -0.95 -1.43 -1.11	V ₃ C ₂ 0.00 -0.47 -0.35 -1.23 -0.49 -0.80 -0.68 -1.28	Cr ₃ C ₂ 0.00 -0.24 -1.52 -1.52 -1.38 -1.54 -1.88	Y ₃ C ₂ 0.00 -1.99 0.20 0.18 -1.69 -0.40 -0.90 -1.08	Zr ₃ C ₂ 0.00 -2.73 -0.83 -0.54 -1.45 -0.72 -1.11 -1.16	Nb ₃ C ₂ 0.00 -0.51 -0.14 -1.13 -2.50 -0.84 -1.10 -1.32	Mo ₃ C ₂ 0.00 -0.91 -0.43 -1.28 -1.09 -0.54 -0.89 -1.20	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -1.49 -0.43 -0.57 -0.56 -1.29	Hf ₃ C ₂ 0.00 -2.86 0.22 -0.61 -3.50 -0.76 -1.02 -1.16	Ta ₃ C ₂ 0.00 -0.77 -1.37 -1.59 -1.03 -1.14 -1.27	W ₃ C ₂ 0.00 -0.66 -1.30 -1.20 -0.63 -1.05 -1.09
Path4 Surface CO ₂ COOH CO CHO H ₂ CO H ₂ COH H ₃ COH CH ₃	MXene e transferred 0 1 2 3 4 5 6 7	Sc ₃ C ₂ 0.00 -2.63 -0.17 -0.12 -2.72 -0.73 -1.41 -1.05 -1.80	Ti ₃ C ₂ 0.00 -0.01 -0.27 -0.85 -1.94 -0.95 -1.43 -1.11 -1.92	V ₃ C ₂ 0.00 -0.47 -0.35 -1.23 -0.49 -0.80 -0.68 -1.28 -1.86	Cr ₃ C ₂ 0.00 -0.24 -0.90 -1.52 -1.27 -1.38 -1.54 -1.88 -3.50	Y ₃ C ₂ 0.00 -1.99 0.20 0.18 -1.69 -0.40 -0.90 -1.08 -1.47	Zr ₃ C ₂ 0.00 -2.73 -0.83 -0.54 -1.45 -0.72 -1.11 -1.16 -1.80	Nb ₃ C ₂ 0.00 -0.51 -1.13 -2.50 -0.84 -1.10 -1.32 -1.76	Mo ₃ C ₂ 0.00 -0.91 -0.43 -1.28 -1.09 -0.54 -0.89 -1.20 -2.00	Mo ₂ TiC ₂ 0.00 0.49 -0.39 -1.49 -0.43 -0.57 -0.56 -1.29 -1.78	Hf ₃ C ₂ 0.00 -2.86 0.22 -0.61 -3.50 -0.76 -1.02 -1.16 -2.86	Ta ₃ C ₂ 0.00 0.00 -0.77 -1.37 -1.59 -1.03 -1.14 -1.27 -1.86	W ₃ C ₂ 0.00 0.66 -0.48 -1.30 -1.20 -0.63 -1.05 -1.09 -2.18

Table S5.Gibbs free energy and equilibrium potentials of several possible CO₂RR cathode reactions.

Cathode Reaction	$\Delta G(eV)$	\cup_0 vs RHE(V)
$CO_2+2H^++2e^-\rightarrow CO(g)+H_2O$	0.21	-0.11
$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH(l) + H_2O$	-0.10	0.02
$CO^2 + 8H^+ + 8e^- \rightarrow CH_4(g) + 2H_2O$	-1.35	0.17
$CO_2 + 2H^+ + 2e^- \rightarrow HCOOH(l) + H_2O$	0.50	-0.25
$CO_2+4H^++4e^-\rightarrow HCHO(l)+H_2O$	0.28	-0.07

Gibbs free energy of reaction for CO₂RR elementary steps involving (H⁺+e⁻) pair transfer was calculated using computational hydrogen electrode (CHE) model, it defined as Δ Gn(U)= Δ G n(U=0) +neU, where n is the number of (H⁺+e⁻) pairs transferred in CO₂RR and U is the electrode potential versus the reversible hydrogen electrode (RHE). Δ GpH represents the correction of the free energy due to the variations in H⁺ concentration, defined as GpH=-kTln[H⁺] = kTln10×pH, and the value of pH was set to 0 for strong acidic medium in this work and therefore, the calculated limiting potentials (U_L) were referenced to the RHE.

Figure. S1 Plot of $U_L(CO_2) - U_L(H_2)$ as a function of $U_L(CO_2)$ showing the selectivity of CO_2RR relative to HER for MXenes. Vertical line in (c) marks the equilibrium potential for the reduction of CO_2 to CH_4 (0.17 V vs. RHE).

Figure. S3 Gibbs free energy changes (ΔG) linear relation for (a) the protonation step of COOH vs.CH₃, (b) COOH vs. CO, and (c) HCOOH formation vs. HCHO formation (d) H₂COOH vs. HCHO (e) HCHO vs. H₃CO (f) O vs. OH (g) COOH vs. CHO (h) COOH vs. HCOOH (i) HCOOH vs. CH₃OH (j) H₂COOH vs. HCO₂ (k) HCHO vs. H₂COOH (l) O vs. H₃CO (m) COOH vs. H₂COH (n) H₂COH vs. H₂CO₂ formation on MXene. Data points of M₃C₂ MXene below the dashed diagonal line are expected to be more selective towards upper than below, at U = 0V (vs.RHE).

Figure. S4 Gibbs free energy changes (ΔG) for (a) the protonation step of CO₂RR (HCO₂ and COOH) vs. HER, (b) the protonation step of CO₂RR vs. HER selective towards. Data points of M₃C₂ MXene below the dashed diagonal line are expected to be more selective towards CO₂RR than HER, more selective towards *HCO₂ than *COOH formation, and more selective towards CO₂RR than HER formation at U = 0 V (vs. RHE).

Figure. S6 Reaction gibbs free energy profiles for CO₂ reduction reactions along the the lowest energy pathway by using the relation limiting potential (U_L) on M_3C_2 type MXene (a) M =Sc, Ti, V, Cr, Y, and Zr (b) M =Nb, Mo, Mo₂Ti, Hf, Ta, Zr and W at 0 V (vs. RHE).

Figure.S7 Free energy diagrams of the overall CO_2RR pathway for all reaction pathways on Mo_3C_2 at 0 V vs. the RHE. (a) Pathway 1 (b) Pathway 2 (c) Pathway3 (d) Pathway 4.

Figure. S8 Free energy diagrams of the overall CO₂RR pathway for all reaction pathways on Mo₂TiC₂ at 0 V vs. the RHE. (a) Pathway 1 (b) Pathway 2 (c) Pathway 3 (d) Pathway 4.

Figure. S9 Top view of energy path followed for the CO_2 conversion mechanism into CH_4 and H_2O catalyzed by MXene. the blue numbers represent the energy required to carry out a reaction step (in eV). (a) Mo_3C_2 (b)

Figure. S10 Top view of various possible reaction pathways for CO₂RR on the (a) Mo₃C₂ (b) Mo₂TiC₂ MXene monolayer, respectively. Here, the transition states (TS) are marked and the corresponding reaction barrier (TS) and reaction energy (Δ E), the change in the total energies between products and reactants are also presented, the activation energies and reaction energies (in units of eV) are given in blue and red numbers, respectively.

Elementary reaction mechanism

Detailed calculations

Elementary reaction steps

 $\begin{array}{c} \textbf{-0.49}_{\texttt{HI}} & \textbf{+H}_{\texttt{HI}} & \textbf{+H}_{\texttt{I}} & \textbf{+H}_{\texttt{I}} & \textbf{-0.65}_{\texttt{I}} \\ \textbf{+H}_{\texttt{I}} & \textbf{+H}_{\texttt{I}} & \textbf{-0.65}_{\texttt{I}} \\ \textbf{-1.30} & \textbf{-1.67} & \textbf{-1.33} & \textbf{-H}_{\texttt{I}} \\ \textbf{0.0} & \textbf{-1.30} & \textbf{-1.30} & \textbf{-1.30} \\ \textbf{-2.13} & \textbf{-2.13} & \textbf{-2.13} \\ \textbf{$ $\xrightarrow{\mathbf{CO}_{2}} * \underbrace{\mathbf{COOH}_{(-0.88)}}_{(-0.88)} * \underbrace{\mathbf{HCOOH}_{(-1.15)}}_{(-1.15)} * \underbrace{\mathbf{HCO}_{2}}_{(-1.92)} * \underbrace{\mathbf{H}_{2}}_{(-4.93)} * \underbrace{\mathbf{H}_{2}}_{(-1.05)} * \underbrace{\mathbf{H}_{3}}_{(-1.78)} * \underbrace{\mathbf{H}_{3}}_{(* \rightarrow * \underset{(0,0)}{\overset{+\text{H}}{\overset{+\text{H}}{\overset{-}}} * \underset{(-1,67)}{\overset{+\text{H}}{\overset{+}}{\overset{+\text{H}}{\overset{+}}{\overset{+\text{H}}{\overset{+}}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}{\overset{+}}}{\overset{+}}{\overset{+}}}{\overset{+}}{\overset{+}}}{\overset{+}}{\overset{+}}}{\overset{+}}{\overset{+}}}{\overset{+}}{\overset{+}}}{\overset{+}}}{\overset{+}}}{\overset{+}}{\overset{+}}{\overset{+}}}{\overset{+}}}{\overset{+}}}{\overset{+}}}{\overset{+}}{\overset{+}}}{\overset{+}}}{\overset{+}}}{\overset{+$ $\begin{array}{c} \overset{+\text{H}}{\longrightarrow} \star \underbrace{\text{COOH}}_{(0.0)} \xrightarrow{+\text{H}} \star \underbrace{\text{COOH}}_{(-0.88)} \xrightarrow{+\text{H}} \star \underbrace{\text{H}}_{2} \underbrace{\text{COO}}_{(-1.98)} \xrightarrow{+\text{H}} \star \underbrace{\text{H}}_{2} \underbrace{\text{COH}}_{(-4.93)} \xrightarrow{+\text{H}} \star \underbrace{\text{H}}_{2} \underbrace{\text{COH}}_{(-1.05)} \xrightarrow{+\text{H}} \star \underbrace{\text{H}}_{3} \underbrace{\text{COH}}_{(-1.78)} \xrightarrow{+\text{H}} \star \underbrace{\text{CH}}_{3} \xrightarrow{+\text{H}} \star \underbrace{\text{CH}}_{4} \underbrace{+\text{H}}_{2} \underbrace{\text{COH}}_{(-1.78)} \xrightarrow{+\text{H}} \times \underbrace{\text{CH}}_{3} \xrightarrow{+\text{H}} \times \underbrace{\text{COH}}_{-1.78} \xrightarrow{+\text{H}} \underbrace{\text{COH}}_{-1.78} \xrightarrow{+\text{H}} \times \underbrace{\text{CH}}_{3} \xrightarrow{+\text{H}} \times \underbrace{+\text{H}} \times \underbrace{\text{CH}}_{3} \xrightarrow{+\text{H}} \times \underbrace{+\text{H}} \times \underbrace{+\text{H}}$

Formation energy

(1) M+CO₂ \rightarrow M-CO₂

(1) M.CO. M.C.

 $\Delta E = E_{M-CO_2} - E_M - E_{CO_2}$ (2) M+CO₂+1/2H₂+e⁻ \rightarrow M-HCO₂ (3) M+CO₂+H₂+2e⁻ \rightarrow M-H₂CO₂ $\Delta E = E_{M-H_2COOH} - E_M - E_{CO_2} - 3/2E_{H_2}$ (5) M+CO₂+2H₂+4e⁻ → M-H₂CO+H₂O $\Delta E = E_{M-CH_4} + 2E_{H_2O} - E_M - E_{CO_2} - 4E_{H_2}$ $\Delta E = E_{M-H_2CO} + E_{H_2O} - E_M - E_{CO_2} - 2E_{H_2}$

(6) M+CO₃+5/2H₃+5e⁻→M-H₃CO+H₂O $\Delta E = E_{M-H_{3}CO} + E_{H_{2}O} - E_{M} - E_{CO_{2}} - 5/2E_{H_{2}}$ (7) M+CO₂+3H₂+6e⁻ \rightarrow M-O+H₂O+CH₄ $\Delta E = E_{M-HCO_2} - E_M - E_{CO_2} - 1/2E_{H_2} \qquad \Delta E = E_{M-O} + E_{H_2O} + E_{CH_4} - E_M - E_{CO_2} - 3E_{H_2}$ (8) M+CO₂+7/2H₂+7e⁻→M-OH+H₂O+CH₄ $\Delta E = E_{M-H_2CO_2} - E_M - E_{CO_2} - E_{H_2}$ (4) M+CO₂+3/2H₂+3e⁻ → M-H₂COOH
(9) M+CO₂+4(H_1) + 2H_2 - M_2 - (H_1) + 2H_2 - (H_2) + (H_2 (9) M+CO₂+4H₂+8e⁻→M-CH₄+2H₂O

Formation energy

$$\Delta E = E_{M-CO_2} - E_M - E_{CO_2} \qquad (b) \text{ M+CO}_2 + 3/2H_2 + 3e^{-3} - MH_2 + 2COHH_2 COHH_2 + 2COHH_2 + 2COHH_2$$

Formation energy

Continue mechanism I (6) $M+CO_2+5/2H_2+5e^- \rightarrow M-H_3CO+H_2O$

(7) M+CO₂+3H₂+6e⁻ \rightarrow M-H₃COH+H₂O

 $\Delta E = E_{M-H_{3}COH} + E_{H_{2}O} - E_{M} - E_{CO_{2}} - 3E_{H_{2}}$ (1) M+CO₂+1/2H₂+e⁻→M-COOH

 $\Delta E = E_{M-COOH} - E_M - E_{CO_2} - 1/2E_{H_2}$

(2) M+CO₂+H₂+2e⁻→M-CO+H₂O

 $\Delta E = E_{M-CO} + E_{H_2O} - E_M - E_{CO_2} - E_{H_2}$

Continue mechanism II (5) (8) M+CO₂+7/2H₂+7e⁻ \rightarrow M-H₃C+2H₂O $\Delta E = E_{\rm M-H_3CO} + E_{\rm H_2O} - E_{\rm M} - E_{\rm CO_2} - 5 / 2E_{\rm H_2} \quad \Delta E = E_{\rm M-H_3C} + 2E_{\rm H_2O} - E_{\rm M} - E_{\rm CO_2} - 7 / 2E_{\rm H_2O} - 2E_$ (9) M+CO₂+4H₂+8e⁻ \rightarrow M-H₄C+2H₂O $\Delta E = E_{M-CH_4} + 2E_{H_2O} - E_M - E_{CO_2} - 4E_{H_2}$ (3) $M+CO_2+3/2H_2+3e^- \rightarrow M-HCO+H_2O$ $\Delta E = E_{M-HCO} + E_{H_2O} - E_M - E_{CO_2} - 3/2E_{H_2}$

(4) M+CO₂+2H₂+4e⁻ \rightarrow M-H₂CO+H₂O

 $\Delta E = E_{M-H_{2}CO} + E_{H_{2}O} - E_{M} - E_{CO_{2}} - 2E_{H_{2}}$

Mechanism I

(1) M+CO₂+H⁺+e⁻ \rightarrow M-HCO₂ $\Delta \mathbf{G}_1 = \Delta \mathbf{G}_{M-HCO_2} + \mathbf{U}_1^0$ (2) M-HCO₂+H⁺+e⁻ \rightarrow M-H₂CO₂ $\Delta \mathbf{G}_2 = \Delta G_{\mathbf{M}-\mathbf{H}_2\mathbf{CO}_2} - \Delta G_{\mathbf{M}-\mathbf{HCO}_2} + \boldsymbol{U}_2^0$ (3) $M-H_2CO_2+H^++e^-\rightarrow M-H_2COOH$ $\Delta G_3 = \Delta G_{M-H_2COOH} - \Delta G_{M-H_2CO_2} + U_3^0$

(4) M-H₂COOH+H⁺+e⁻ \rightarrow M-H₂CO+H₂O

 $\Delta \mathbf{G}_4 = \Delta \mathbf{G}_{M-H_2CO} + \Delta \mathbf{G}_{H_2O} - \Delta \mathbf{G}_{M-H_2COOH} + U_4^0$

(5) M-H₂CO+H⁺+e⁻ \rightarrow M-H₃CO $\Delta \mathbf{G}_5 = \Delta \mathbf{G}_{M-H_3CO} - \Delta \mathbf{G}_{M-H_2CO_2} + \mathbf{U}_5^0$ (6) M-H₃CO+H⁺+e⁻→M-O+CH₄ $\Delta G_6 = \Delta G_{M-O} + \Delta G_{CH_4} - \Delta G_{M-H_3CO} + U_6^0$ (7) M-O+H⁺+e⁻→M-OH $\Delta G_7 = \Delta G_{M-OH} - \Delta G_{M-O} + U_7^0$ (8) M-OH+H⁺+e⁻→M-H₂O

 $\Delta G_8 = \Delta G_{H_2O} - \Delta G_{M-OH} + U_8^0$

Total reaction: $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$

 $\Delta G_1 + \Delta G_2 + \Delta G_3 + \Delta G_4 + \Delta G_5 + \Delta G_6 + \Delta G_7 + \Delta G_8 = -5.47$ Mechanism

(1) $M+CO_2+H^++e^- \rightarrow M-COOH$

 $\Delta G_1 = \Delta G_{\mathit{M-COOH}} + U_1^0$ (2) M-COOH+H⁺+e⁻→M-HCOOH

 $\Delta G_2 = \Delta G_{M-HCOOH} - \Delta G_{M-COOH} + U_2^0$ (3) M-HCOOH+H⁺+e⁻→M-HCO+H₂O

 $\Delta \mathbf{G}_{3} = \Delta G_{M-HCO} + \Delta G_{\mathrm{H}_{2}O} - \Delta G_{M-HCOOH} + U_{3}^{0}$ (4) M-HCO+H⁺+e⁻ \rightarrow M-H₂CO

 $\Delta G_4 = \Delta G_{M-H,CO} - \Delta G_{M-HCO} + U_4^0$

(5) $M-H_2CO+H^++e^- \rightarrow M-H_2COH$ $\Delta G_5 = \Delta G_{M-H_2COH} - \Delta G_{M-H_2CO} + U_5^0$ (6) M-H₂COH+H⁺+e⁻ \rightarrow M-H₃COH

 $\Delta G_6 = \Delta G_{M-H_3COH} - \Delta G_{M-H_2COH} + U_6^0$ (7) M-H₃COH+H⁺+e \rightarrow M-CH₃+H₂O

 $\Delta \mathbf{G}_7 = \Delta G_{M-CH_3} + \Delta G_{H_2O} - \Delta G_{M-H_3COH} + U_7^0$ (8) M-CH₃+H⁺+e⁻→M-CH₄

```
\Delta \mathbf{G}_8 = \Delta G_{\mathrm{M-CH}_4} - \Delta G_{\mathrm{M-CH}_3} + \boldsymbol{U}_8^0
```

Total reaction: $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$

 $\Delta G_1 + \Delta G_2 + \Delta G_3 + \Delta G_4 + \Delta G_5 + \Delta G_6 + \Delta G_7 + \Delta G_8 = -5.47$

Mechanism III

(1) $M+CO_2+H^++e^- \rightarrow M-HCO_2$ $\Delta G_1 = \Delta G_{M-HCO_2} + U_1^0$ (2) $M-HCO_2+H^++e^- \rightarrow M-H_2CO_2$ $\Delta G_2 = \Delta G_{M-H_2CO_2} - \Delta G_{M-HCO_2} + U_2^0$ (3) $M-H_2CO_2+H^++e^- \rightarrow M-H_2COOH$ $\Delta G_3 = \Delta G_{M-H_2COOH} - \Delta G_{M-H_2CO_2} + U_3^0$ (4) $M-H_2COOH+H^++e^- \rightarrow M-H_2CO+H_2O$

(5) M-H₂CO+H⁺+e⁻ \rightarrow M-H₃CO $\Delta G_5 = \Delta G_{M-H_3CO} - \Delta G_{M-H_2CO_2} + U_5^0$ (6) M-H₃CO+H⁺+e⁻ \rightarrow M-CH₃OH $\Delta G_6 = \Delta G_{M-O} + \Delta G_{CH_4} - \Delta G_{M-H_3CO} + U_6^0$ (7) M-CH₃OH+H⁺+e⁻ \rightarrow M-CH₃+H₂O $\Delta G_7 = \Delta G_{M-CH_3} + \Delta G_{H_2O} - \Delta G_{M-CH_3OH} + U_7^0$

(8) M-CH₃+H⁺+e⁻→M-CH₄

 $\Delta \mathbf{G}_4 = \Delta G_{M-H_2CO} + \Delta G_{H_2O} - \Delta G_{M-H_2COOH} + \boldsymbol{U}_4^0 \quad \Delta \mathbf{G}_8 = \Delta G_{\mathrm{CH}_4} - \Delta G_{M-CH_3} + \boldsymbol{U}_8^0$

References

1. Greeley, J.; Nørskov, J. K., Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations. Electrochimica Acta 2007, 52, 5829-5836.

2. Henkelman, G.; Arnaldsson, A.; Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354-360.

3. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886-17892.

4. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311-1315.

5. He, B. L.; Shen, J. S.; Tian, Z. X., Iron-embedded C₂N monolayer: a promising low-cost and highactivity single-atom catalyst for CO oxidation. Phys. Chem. Chem. Phys. 2016, 18, 24261-24269.