Supporting Information

Ultrastable Li-ion battery anode by encapsulating SnS nanoparticles in sulfur-doping graphene bubble film

Bing Zhao ^{a,b}, Daiyun Song ^a, Yanwei Ding ^a Juan Wu ^a, ZhixuanWang ^{a,b}, Zhiwen Chen ^a, Yong Jiang ^{a,b*}, Jiujun Zhang^{b,*}

^a School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.

^b Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 200444, China.

* Corresponding author.

E-mail address: jiangyong@shu.edu.cn (Y. Jiang), jiujun.zhang@i.shu.edu.cn (J.

Zhang)

Figure S1. High-resolution (a) Sn 3d, (b) S 2p, and (c) C 1s XPS spectra of SnS/G.

Figure S2. Raman spectra of SnS/G and SnS@G composites.

Figure S3. SEM images of SnS@G.

Figure S4. TG curves of SnS/G and SnS@G.

Figure S5. Typical discharge/charge curves of SnS/G at a current density of 0.1 A g⁻¹.

Samples	Initial Coulombic efficiency (%)	Capacity			
		cycles	current densities (A g ⁻¹)	Reversed capacity (mAh g ⁻¹)	Ref.
SnS@G	83.2	83.2 200 0.1 A g ⁻¹ 1462		1462 mAh g ⁻¹	This work
SnS/Polypyrrole	59.4	50	0.1 A g ⁻¹	1000mAh g ⁻¹	[S1]
SnS/S-GNS	81.7	100	0.1 A g ⁻¹	893.9 mAh g ⁻¹	[S2]
SnS/C NFs	70.3	500	0.2 A g ⁻¹	648 mAh g ⁻¹	[S3]
SnS/C nanospheres	80.2	50	0.1 A g ⁻¹	936 mAh g ⁻¹	[S4]
Se-doped SnS carbon nanofibers	72	100	0.1 A g ⁻¹	693 mAh g ⁻¹	[S5]
SnS nanoparticles/PDDA- Ti ₃ C ₂ nanosheets	82	100	0.1 A g ⁻¹	646 mAh g ⁻¹	[S6]
Three-Dimensional SnS @C	55	100	0.1 A g ⁻¹	780 mAh g ⁻¹	[S7]
C@SnS/SnO2@CNFs	42	200	0.5 A g ⁻¹	696 mAh g ⁻¹	[S8]

Table S1. Comparison of Li storage performances of SnS@G in this work with those

 of others reported in the literatures.

Sample		$R_{\rm e}$ (Ω)	$R_{ m f}$ $\Omega()$	$R_{ m ct}$ (Ω)	$\Delta R_{\rm ct}$ (Ω)	σ _w (Ω s ^{-0.5})	$D_{\rm Li}^+$ (cm ² s ⁻¹)
SnS@G	Before cycle	2.18	-	52.69	- 24 72	163.14	1.49×10 ⁻¹³
	After 1st cycle	2.48	17.52	27.96	24.75		
SnS/G	Before cycle	2.08	2.08 -		12.26	271 26	2 80×10-14
	After 1st cycle	2.57	22.12	49.36	12.30	571.50	2.09^10

Table S2 Kinetic parameters of SnS/G and SnS@G electrodes.

The true diffusion coefficient of lithium ion (p_{Li^+}) can be calculated from the sloping lines as the following equation.

$$D_{Li^{+}} = R^2 T^2 / 2A^2 n^4 F^4 C^2 \sigma_w^2 \tag{1}$$

where *R* is the gas constant, *T* is the absolute temperature, *A* is the contact area between the composite anode and electrolyte (for simplicity, area of the electrode is used here), *n* is the charge-transfer number, *C* is the molar concentration of lithium ions in the active material, *F* represents the Faraday constant, and Warburg coefficient (σ_w) is determined by Z_{re} and $\omega^{-1/2}$ (ω is the angular frequency). The linear relationship between Z_{re} and $\omega^{-1/2}$ in the low frequency region is shown in Figure 4g, and the data graph is fitted to the Warburg factor σ_w , and then the Li⁺ diffusion coefficient (D_{Li}^+) is calculated from equation (1). The results show that the D_{Li}^+ of SnS@G is calculated to be 1.49×10⁻¹³ and 5 times to the SnS/G electrode (Table S1), indicating that rapid lithium ion transport kinetics in obtained for thin SEI layer in the graphene bubble film encapsulated SnS composite.

References

- S1. J. Liu, M. Gu, L. Ouyang, H. Wang, L. Yang and M. Zhu, ACS Appl. Mater. Inter., 2016, 8, 8502-8510.
- S2. Y. Jiang, Y. Ding, F. Chen, Z. Wang, Y. Xu, S. Huang, Z. Chen, B. Zhao and J. Zhang, *Nanoscale*, 2020.
- S3. J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan, Y. Yuan, Y. Zhang, S. Nie, J. Pan and X. Wang, *Energy Storage Materials*, 2019, 17, 1-11.
- Z. Deng, H. Jiang, Y. Hu, C. Li, Y. Liu and H. Liu, *AIChE Journal*, 2018, 64, 1965-1974.
- S5. L. Lu, L. Zhang, H. Zeng, B. Xu, L. Wang and Y. Li, *J. Alloy. Compd.*, 2017, 695, 1294-1300.
- S6. J. Ai, Y. Lei, S. Yang, C. Lai and Q. Xu, Chem. Eng.J. 1, 2019, 357, 150-158.
- S7. Y. Zhou, Q. Wang, X. Zhu and F. Jiang, *Nanomaterials*, 2018, 8, 135.
- S8. J. Zheng, Y. Luo, D. Xie, X. Xiong, Z. Lin, G. Wang, C. Yang and M. Liu, J. Alloy. Compd., 2019, 779, 67-73.