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Figure S1. Specific structural parameters of the island-chain design.
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Figure S2. Illustrations and finite element analysis patterns of designed structures.

As shown by the yellow area, stress concentrated at the turning point, where it is easy to tear 

the PSC, making it unusable.
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Figure S3. Diagrams of mechanical properties related to the designed stretchable structures.

The stress and strain of the first three structures were minimal. Loading was less than 1 N, and 

the tensile stress was less than 0.5 MPa. However, the fourth structure was unlike the first 

three. The stress and strain were considerable; however, it was difficult to break the device, 

mainly owing to the contraction of the space during the tensile process.
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Figure S4. Photographs showing the state of device during test with omnipatent material 

machine.
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Figure S5. Magnified SEM image of regions subjected to different strains.

Severe bending generated cracks, which degraded the device performance. The bending strain 

caused by stretching can be divided into two types of behavior: a low strain region (r ≥ 2 mm) 

and high strain region (r < 2 mm). There was no cracking in the low-strain region; however, 

multiple cracks were observed in the high-strain region (Figure S5d)
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Figure S6. Finite element analysis patterns of regions subjected to different strains.
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Figure S7. XRD patterns of the low-temperature synthesized SnO2 powders and spin-coated 

thin films.

All peaks were consistent with a tetragonal SnO2 structure (space group P42/mnm, a=0.4738 

nm and c=0.3187 nm). No peaks of the starting substance or any residual species were found 

in the XRD pattern, indicating the synthesis of pure SnO2 crystals
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Figure S8. Surface morphology of the SnO2 thin film studied by SEM (a) and top-view 

atomic force microscopy (b, c); size distribution of SnO2 crystals (d).
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Figure S9. Bright-field TEM image of hydrothermal SnO2 nanocrystals.
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Figure S10. AFM images of the SnO2 films with a root-mean-square roughness of 12.1 nm.
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Figure S11. Top-view atomic force microscopy (a) and size distribution (b) of ITO crystals.
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Figure S12. Surface morphology of perovskite film studied by top-view atomic force 

microscopy (a) and SEM (b); size distribution of perovskite crystals (c).
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Figure S13. AFM height images of the perovskite films with root-mean-square roughness 

23.0 nm.
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Figure S14. XRD pattern (a), absorbance spectra with insets showing steady-state 

photoluminescence spectra (b), Fourier transform infrared spectroscopy (FTIR) spectra (c), 

and typical X-ray photoelectron spectroscopy (XPS) survey scan (d) of the perovskite film.
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Figure S15. Representative external quantum efficiency of the PSC device.

A sharp increase in the wavelength of the IPCE curve is consistent with the absorption edge 

data, which appeared at approximately 780 nm. In the visible region, the external quantum 

efficiency reached up to 90%. The integrated short-circuit current (22.4 mAcm−2) matched 

well with the J-V results. The high short-circuit current can be attributed to the high quality of 

the uniform perovskite film.
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Figure S16. Stable output of power conversion efficiency as a factor of time.
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Figure S17. Energy diagram of the structure of the PSC device.

The energy diagram of the device structure indicates sufficient energy deviation in a single 

layer can cause holes and electrons to move towards the corresponding electrodes. The work 

function (WS), valence band maximum (VBM) and bandgap (Eg) of the SnO2 nanocrystals 

are 4.36, 3.74, and 3.79 eV, respectively.[1] The conduction band (EC) of the SnO2 

nanocrystals was calculated from the band structure of the semiconductor to be 4.31 eV, as 

determined from EC = WS + VBM − Eg. In principle, a deeper conduction band and the high 

mobility of SnO2 promotes charge transfer from the perovskite to the electron transport layer, 

indicating a reduced energy barrier. These features suggest that SnO2-based PSCs can provide 

good stable performance.
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Figure S18. Output performance of perovskite solar cells before and after covering with Eco-

flex film.
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Figure S19. Voc, Jsc, and FF statistics of eight devices measured before and after exercise.
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Figure S20. SEM photos of cracks in ITO film at strain of (a) 0%, (b) 50%, (c) 80%, (d) 

110%, and (e) 140%

.
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Table S1. Key J-V parameters of PSCs covered with Eco-flex film after soaking in water for 

different periods of time.

Table S2. Key J-V parameters of PSCs during stretching process of different strain ratio.
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