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S1 Supplementary Notes

S1.1 The dissociation of confined bilayer water under an external

electric field

First-principles Born-Oppenheimer MD (BOMD) simulations were performed using the CP2K

package.S1 We use a hybrid Gaussian and plane waves (GPW) scheme where the electronic

density is expanded in the form of plane waves with a cutoff of 500 Ry.S2 The molecu-

larly optimized Gaussian basis sets are used.S3 Revised Perdew-Burke-Ernzerh (revPBE)

parametrization is used for the exchange and correlation functional with Grimmes empirical

dispersion corrections (D3).S4–S6 Goedecker-Teter-Hutter pseudopotentials are used to treat

the core electrons.S7 It was shown in previous studies that the combination of revPBE and

D3 predict experimentally consistent structural and dynamical properties of bulk water.S8

The motion of nuclei follows Newtons equations of motion, which is propagated using the

velocity Verlet algorithm with a time step of 0.5 fs. The equilibrium is equilibrated in the

NVT ensemble using a Nosé-Hoover thermostat.

To study the stability of water molecules in the bulk form (Fig. S9 and S10), we follow

the modern theory of polarization and apply periodic EEFs using the Berry-phase method.S9

The results show that the length of OH bond (lOH) is elongated under EEF with significant

fluctuation. Beyond a critical strength of Ec = 3.0 V/nm, water dissociation into H3O
+ and

OH− is observed, and the protons migrate along the H-bond chain via the Grotthuss transfer

mechanism,S10,S11 in consistency with previous Car-Parrinello MD simulation results.S10

For nanoconfined bilayer water, we use a slab model (Fig. S9). Non-periodic EEFs are

applied by directly adding an external potential to the ionic and electronic Hamiltonian. The

graphene wall is modelled by a 9-3 L-J potential, V = ε[ 2
15

(σ
z
)9 − (σ

z
)3], which is imposed on

the oxygen atoms. The parameters ε = 0.1 eV and σ = 4.1 Å are taken from Ref.S12 We

find that the value of lOH is insensitive to the EEF and self-dissociation cannot be identified

in our 10 ps-long BOMD simulations (Fig. S11). This result can be explained by the facts
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that the dielectric constantS13 along the z direction for bilayer water is significantly reduced

from ∼ 80 for bulk water to ∼ 2.0, which in turn elevates the free energy barrier of self-

dissociation,S14 and the continuous H-bond network that is necessary for proton migration

is broken by the presence of walls. Moreover, the water configurations in nanochannel are

modified by the EEF. In the absence of EEF, the distributions of OH bond orientation angle

(θ) in water molecules has a peak at 20◦ (or 160◦) and 100◦ (or 80◦) for the bottom

(or top) water layer, which is consistent with the MD simulation results using atomistic

graphene walls.S15 The peak in the bottom layer shifts to 90◦ under EEF, with the OH

bond lying in parallel to the surface, and 165◦, where the OH bond is almost perpendicular

to surface. These two configurations effectively inhibit the elongation of lOH and thus water

dissociation because of the reduced electrostatic potential difference across the OH group

along the z direction and wall repulsion, respectively.

Previous studies show that the presence of ions in water reduces the threshold EEF for

water dissociation from 3.5 to 2.5 V/nm.S16 To explore this effect under nanoconfinement, we

added Na+ and Cl− in to both bulk and nanoconfined bilayer water. The results show that

for bulk water at E = 3 and 4 V/nm, the O–H bonds in water molecules are stretched with

the presence of charged ions (Fig. S10), which promotes the dissociation of water molecules

by breaking the H-bond network. However, for bilayer water, the distribution of lOH remains

almost intact with the addition of ions up to 20 V/nm (Fig. S15), indicating no dissociation

of water. The explanation due to the strong confinement effect on the H-bond network still

hold for this finding.
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S1.2 Additional discussion on the force-field parameterization

We use an alternative set of force-field parameters developed by Williams and co-workers to

valid our conclusion reached from the approach introduced in the main text.S17 The 12-6 L-J

parameters between ions and carbon atoms in graphene are fitted from DFT-calculated PMF

for an ion near a graphene surface. Our results indicate that the ion trajectories and FEL

are similar as those plotted in Figs. 3 and 4a. The SDDF for water and ions, self-diffusion

coefficients (D), and selectivity (S) are plotted Fig. S13 as a function of the field strength,

E. The value of D is reduced beyond at a critical field strength of E = ∼ 5 and ∼ 10 V/nm

for Na+ and K+, respectively. The value of SK+/Na+ increases from less than 2.0 at E < ∼ 5

V/nm to higher than 30.0 at E = 20 V/nm. These results validate our conclusions obtained

from the force field developed by Kenneth and co-workers.S18
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S1.3 Near-surface diffusion of ions in h-BN and MoS2 nanochan-

nels

We study near-surface diffusion of ions in h-BN and MoS2 nanochannels using force-field

parameters summarized in Table S4.S19,S20 The interlayer spacings are 1.02 and 1.295 nm for

the h-BN and MoS2 channels, respectively, which correspond to an effective channel width

or the thickness of water layers of 0.68 nm that is the same as the value considered for the

graphene channels. The 12-6 L-J parameters between the ions and atoms in the walls are

determined from the Lorentz-Berthelot mixing rules. The FELs of Na+ in the h-BN and

MoS2 nanochannels are plotted in Fig. S14 for E = 10 and 20 V/nm.
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S2 Supplementary Tables, Figures and Captions

Table S1: The ion-water PDF measured for Na+. Here p1 and v1 are the positions of the
first peak and valley, respectively. g1 is the height of the first peak, and Nc is the number of
water molecules in the 1HS.

E (V/nm) p1 (nm) g1 v1 (nm) Nc

0 0.2325 8.10 0.3155 5.41

5 0.2325 8.16 0.3075 5.35

7.5 0.2325 7.50 0.3025 4.79

10 0.2325 5.75 0.3075 3.92

15 0.2325 4.67 0.3025 3.59

20 0.2375 4.00 0.3125 3.29
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Table S2: The self-diffusion coefficients (D) of water and the population of hydrogen bond
(nHB) with E ranging from 0 to 20 V/nm. The geometry-based criterion is used to analyze
the H-bond network, including the distance between the oxygen of both molecules is smaller
than 0.36 nm, the distance between the oxygen of the acceptor and the hydrogen of the
donor is smaller than 0.245 nm and the angle defined within the dimer geometry is smaller
than 30◦.S21

E (V/nm) D(×10−9m2/s) nHB

0 2.37 ± 0.03 3.27

5 2.61 ± 0.03 3.13

10 3.73 ± 0.01 2.83

15 4.07 ± 0.02 2.64

20 3.75 ± 0.01 2.53
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Table S3: The average time interval (∆t) between jumping events from one site to another
in the near-surface ion diffusion process.

E (V/nm) ∆t (ps)

0 0.23

5 0.54

7.5 0.64

10 1.27

15 8.03

20 130.42
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Table S4: The 12-6 L-J parameters used for h-BN and MoS2. Here OW denotes the oxygen
atom in a water molecule.

q(e) σ (nm) ε (kcal/mol)

B +0.37 0.3309 0.0692

N -0.37 0.3217 0.0473

B-OW / 0.3310 0.1214

N-OW / 0.3266 0.1500

Mo +0.76 0.4200 0.0135

S -0.38 0.3130 0.4612

M-OW / 0.3376 0.2379

S-OW / 0.3500 0.6779
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Fig. S1: (a) Density peaks of the Na+ ion and water in a graphene channel. (b) The position
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S18



 0

 0.04

 0.08

 0.12

 0.16

 0.9  1  1.1  1.2

d (Å)

E = 0 V/nm

1

2

3

4

5.4

10l O
H
 d

is
tr

ib
u

tio
n

n
H

+
 (

#
/s

te
p

)

(b)(a)

(d)(c)

 0

 2

 4

 6

 0  2  4  6  8  10

E (V/nm)

water

water + Na+

water + Cl-
l O

H
 d

is
tr

ib
u

tio
n

l O
H
 d

is
tr

ib
u

tio
n

 0

 0.04

 0.08

 0.12

 0.16

 0.9  1  1.1  1.2

d (Å)

bulk water, 3

 4

water +Na+, 3

 4

 0

 0.04

 0.08

 0.12

 0.16

 0.9  1  1.1  1.2

d (Å)

bulk water, 3

4

water +Cl-, 3
4

Fig. S10: Structures of bulk water under EEF. (a) Distribution of O–H bond-length (lOH)
under EEF ranging from 0 - 10 V/nm. (b) Instantaneous number of protons counted for
pure water and water containing Na+ or Cl− ions. The ion concentration is 1.74 M. The
values plotted for pure water with E ≥ 3 V/nm are averaged from 2 independent simulation
runs. (c)-(d) lOH calculated at E = 3 and 4 V/nm for pure water and ion-containing water,
showing the elongation of O–H bonds under EEF.

S19



−4

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 0  0.2  0.4  0.6  0.8  1

D
e

n
si

ty
 (

g
/c

m
3
)

z (nm)

water

O H

20 V/nm

15 V/nm

10 V/nm

5 V/nm

0 V/nm

 0

 5

 10

z
 (

Å
)

 0  30  60  90  120  150  180
θ

 0

1

2

3

d
is

tr
ib

u
tio

n

 0

 5

 10

z
 (

Å
)

 0

 5

 10

z
 (

Å
)

 0

 5

 10

z
 (

Å
)

 0

 5

 10

z
 (

Å
)

5 V/nm

10 V/nm

15 V/nm

20 V/nm

z

θ

z

0o

z

90o

z

180o

 0

 0.04

 0.08

 0.12

 0.16

 0.9  1  1.1  1.2
d (Å)

E = 0 V/nm

5

10

15

20

l O
H
 d

is
tr

ib
u

tio
n

(a) (b) (c)

(d)

0 V/nm

Fig. S11: Structures of nanoconfined water bilayer under EEF. (a) The density distribution
of water molecules, and O, H atoms in the z direction. The values for O, H distribution
is shown in arbitrary units. (b) Distribution of the OH tilt angle (θ) in water molecules.
(c) Typical configurations of water molecules with tilt angles of 0◦, 90◦ and 180◦. (d) The
bond-length distribution under EEF from 0 - 20 V/nm.

S20



−2.5

−2

−1.5

−1
Li

+
Na

+
K

+
Rb

+

 0

 0.1

 0.2

∆E
b
 (eV)

H
 

C 
E

b
(B) - E

b
(H)

E
b
 (

e
V

) E
b
(C) - E

b
(H)

B

(a) (b)

C
B

H

Fig. S12: (a) The supercell model constructed for DFT calculations. The representative
sites are highlighted, including the hollow of aromatic ring (H), the middle point of C-C bond
(bridge, B) and the top of C atom (top C, C). (b) Binding energies of the alkali ions on the
the representative sites, and the diffusion barriers ∆Eb calculated as the difference of ∆Eb

between sites H and B or C.

S21



 0.01

 0.1

 1

 10

 0  5  10  15  20

E (V/nm)

K+

Na+

 1

 3

 6

S
 (

K
+
/N

a
+
)

 1

 2

 4

 8

6

2

4

 0  5  10  15  20

E (V/nm)

D
 (

x
1

0
-9

 m
2
/s

)

(d)(c)

(b)(a)

−0.5 −0.25  0  0.25  0.5

D
e

n
s
it
y
 d

is
tr

ib
u

ti
o
n

z (nm)

−0.5 −0.25  0  0.25  0.5

D
e

n
s
it
y
 d

is
tr

ib
u

ti
o
n

z (nm)

20 V/nm

15 V/nm

10 V/nm

5 V/nm

0 V/nm

water
Na+

20 V/nm

15 V/nm

10 V/nm

5 V/nm

0 V/nm

water
K+

Fig. S13: (a) Self-diffusion coefficients, D, and (b) the selectivity, S, calculated for K+ and
Na+ ions obtained from MD simulations using force-field parameters provided by Williams
and co-workers.S17

S22



 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8

y
 (

n
m

)

x (nm)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8

y
 (

n
m

)

x (nm)

 0

 1

 2

 3

 4

 5

 6

(c) (d)

(a) (b)

MoS
2
, E = 10 V/nm

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8

y
 (

n
m

)

x (nm)

 0

 2

 4

 6

 8

 10

 12

 14
MoS

2
, E = 20 V/nm

h-BN, E = 10 V/nm

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8

y
 (

n
m

)

x (nm)

 0

 2

 4

 6

 8

 10

 12
h-BN, E = 20 V/nm

N

B

S

Mo

∆G(r) (k
B
T) ∆G(r) (k

B
T)

∆G(r) (k
B
T) ∆G(r) (k

B
T)

Fig. S14: FELs of Na+ ions in h-BN and MoS2 nanochannels with E = 10 and 20 V/nm.
The positive-charged (B and Mo) and negative-charged (N and S) atoms are colored in blue
and red, respectively.

S23



 0

 0.04

 0.08

 0.12

 0.16

 0.9  1  1.1  1.2

d (Å)

E = 0 V/nm

5

10

15

20

l O
H
 d

is
tr

ib
u

tio
n

 0

 0.04

 0.08

 0.12

 0.16

 0.9  1  1.1  1.2

d (Å)

l O
H
 d

is
tr

ib
u

tio
n

E = 0 V/nm

5

10

15

20

(a) (b)

Fig. S15: Distribution of O–H bond-length in nanoconfined water bilayer under EEF rang-
ing from 0 - 20 V/nm, where Na+ (a) and Cl− (b) ions are included (1 ion for 32 water
molecules).

S24



References

(S1) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. CP2K: Atomistic Simula-

tions of Condensed Matter Systems. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014,

4, 15–25.

(S2) By Gerald, L.; Hutter, J.; Parrinello, M. A Hybrid Gaussian and Plane Wave Density

Functional Scheme. Mol. Phys. 1997, 92, 477–488.

(S3) VandeVondele, J.; Hutter, J. Gaussian Basis Sets for Accurate Calculations on Molec-

ular Systems in Gas and Condensed Phases. J. Chem. Phys. 2007, 127, 114105.

(S4) Zhang, Y.; Yang, W. Comment on Generalized Gradient Approximation Made Simple.

Phys. Rev. Lett. 1998, 80, 890.

(S5) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made

Simple. Phys. Rev. Lett. 1996, 77, 3865.

(S6) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Ini-

tio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94

Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

(S7) Goedecker, S.; Teter, M.; Hutter, J. Separable Dual-Space Gaussian Pseudopotentials.

Phys. Rev. B 1996, 54, 1703.

(S8) Bankura, A.; Karmakar, A.; Carnevale, V.; Chandra, A.; Klein, M. L. Structure,

Dynamics, and Spectral Diffusion of Water from First-Principles Molecular Dynamics.

J. Phys. Chem. C 2014, 118, 29401–29411.

(S9) Umari, P.; Pasquarello, A. Ab Initio Molecular Dynamics in a Finite Homogeneous

Electric Field. Phys. Rev. Lett. 2002, 89, 157602.

(S10) Saitta, A. M.; Saija, F.; Giaquinta, P. V. Ab Initio Molecular Dynamics Study of

Dissociation of Water under an Electric Field. Phys. Rev. Lett. 2012, 108, 207801.

S25



(S11) Geissler, P. L.; Dellago, C.; Chandler, D.; Hutter, J.; Parrinello, M. Autoionization in

Liquid Water. Science 2001, 291, 2121–2124.

(S12) Zhang, X.; Xu, J.-Y.; Tu, Y.-B.; Sun, K.; Tao, M.-L.; Xiong, Z.-H.; Wu, K.-H.;

Wang, J.-Z.; Xue, Q.-K.; Meng, S. Hexagonal Monlayer Ice without Shared Edges.

Phys. Rev. Lett. 2018, 121, 256001.

(S13) Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Yang, Q.;

Radha, B.; Taniguchi, T.; Watanabe, K.; Gomila, G.; Novoselov, K. S.; Geim, A. K.

Anomalously Low Dielectric Constant of Confined Water. Science 2018, 360, 1339–

1342.
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