Supporting Information

Facile in situ fabrication of biomorphic $Co_2P-Co_3O_4/rGO/C$ as efficient electrocatalyst for oxygen reduction reaction

Xingmei Guo,^a Cheng Qian,^a Xiaohan Wan,^a Wei Zhang,^a Haowei Zhu,^a Junhao Zhang,^{*a} Hongxun Yang,^a Shengling Lin,^a Qinghong Kong^b and Tongxiang Fan^{*c}

^aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China

Email: jhzhang6@just.edu.cn

^bSchool of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

^cSchool of Materials Science and Technology, Shanghai Jiaotong University, Shanghai 200240, China

Email: txfan@sjtu.edu.cn

Fig. S1 FESEM image of Streptococcus thermophiles adsorbed with precursor and GO.

89 O		@ @		
0 1 2 2 25.559 counts in 30 seconds	3 4 5	6 7 8 9 10	11 12 13 14 15	16 17 18 19 4 ¹
o 23,559 counts in 30 seconds Element	3 4 5 Symbol -	6 7 8 9 10 Element Name +	11 12 13 14 15 Atomic Conc. ₽	16 17 18 19 میں Weight Conc. 42
23,559 counts in 30 seconds Element	3 4 5 Symbol φ φ	6 7 8 9 10 Element Name 4 Carbon 4	11 12 13 14 15 Atomic Conc. م 52.49 م	انو Weight Conc.↔ 36.24↔
25,559 counts in 30 seconds Element C 0	з 4 5 Symbol 0 0 0	6 7 8 9 10 Element Name 4 Carbon 4 Oxygen 4	11 12 13 14 15 Atomic Conc. ↔ 52.49 ↔ 33.88 ↔	16 17 18 19 ψ Weight Conc. φ 36.24 φ 31.15 φ
25,859 counts in 30 seconds Element O C C	з 4 5 Symbol 4 4 4 04	Element Name & Carbon & Oxygen & Cobalt &	11 12 13 14 15 Atomic Conc. φ 52.49 φ 33.88 φ 7.20 φ	16 17 18 19 ψ Weight Conc. φ 36.24 φ 31.15 φ 24.40 φ
25.859 counts in 30 seconds Element O O N	3 4 5 Symbol φ φ φ φ φ φ	Element Name & Carbon & Oxygen & Cobalt & Nitrogen &	11 12 13 14 15 Atomic Conc. φ 52.49 φ 33.88 φ 7.20 φ 3.31 φ	16 17 18 19 Weight Conc.φ 36.24φ 31.15φ 24.40φ 2.67φ

Fig. S2 EDX spectrum and detailed elemental data of Co₂P-Co₃O₄/rGO/C.

Fig. S3 FESEM image of biomorphic Co₂P-Co₃O₄/C sample.

Fig. S4 XRD patterns of Co₂P-Co₃O₄/rGO/C with different calcining temperatures.

Fig. S5 Micropore size distribution of Co₂P-Co₃O₄/rGO/C calculated through HK method.

Fig. S6 N₂ adsorption/desorption isotherms of CoO_x/rGO and Co₂P-Co₃O₄/C.

Fig. S7 Actual and fitting Nyquist plots for ORR at 0.85 V vs. RHE on Co_2P - Co_3O_4/C and Co_2P - $Co_3O_4/rGO/C$. Inset: the equivalent circuit.

Fig. S8 (a) CV curves of CoO_x/rGO in oxygen (solid line) and nitrogen (dotted line) saturated KOH solution. (b) LSV curves of CoO_x/rGO , $Co_2P-Co_3O_4/rGO/C$ and Pt/C in oxygen saturated KOH solution at a rotation speed of 1600 rpm.

Fig. S9 CV curves of Co_2P - $Co_3O_4/rGO/C$ in the potential range of 1.2-1.4 V vs. RHE with scan rates increasing from 10 to 100 mV s⁻¹.

Fig. S10 CV curves of Pt/C in the potential range of 1.2-1.4 V vs. RHE with scan rates increasing from 10 to 100 mV s⁻¹.

Fig. S11 Current density differenced at 1.35 V vs. RHE as a function of scan rates.

Fig. S12 CV curves of Co₂P-Co₃O₄/rGO/C and Pt/C in 0.1 mol L⁻¹ KOH containing 0.1 mol L⁻¹ methanol at a scan rate of 50 mV s⁻¹.

Fig. S13 XRD pattern of the as-synthesized NiP_x/NiO_x/rGO/C using Lactobacillus bulgaricus as template and phosphorous source.

Fig. S14 SEM image of the as-synthesized $NiP_x/NiO_x/rGO/C$ using Lactobacillus bulgaricus as template and phosphorous source.

Samples	R _s ^a	CPE1 ^d	n_1	R_C^b	CPE2 ^e	n ₂	R _t ^c
	$[\Omega \text{ cm}^{-2}]$	$[\Omega \text{ cm}^{-2}]$		$[\Omega \text{ cm}^{-2}]$	$[\Omega \text{ cm}^{-2}]$		$[\Omega \text{ cm}^{-2}]$
Co ₂ P-Co ₃ O ₄ /C	6.83	0.021	0.47	41.16	0.004	0.87	202.6
Co ₂ P-Co ₃ O ₄ /rGO/C	6.66	0.145	0.40	2.36	0.007	0.92	45.18

Table S1 Simulated parameters of Nyquist plots for the ORR on Co_2P - Co_3O_4/C and Co_2P - $Co_3O_4/rGO/C$.

^aelectrolyte resistance;

^bcatalyst film intrinsic resistance;

^ccharge transfer resistance for ORR;

^{d,e}constant phase element.

	1			1 1		
Samples	Catalyst	Eonset	E _{1/2}	Tafel slope	J_L	Ref.
	loading	[V]	[V]	[mV dec ⁻¹]	[mA cm ⁻²]	
	[mg cm ⁻²]					
Co ₂ P@CNF	0.20	0.92	0.80	77.10	5.27	1
Co ₂ P/NPC	N/A	N/A	082	69.8	N/A	2
Co ₂ P NRs	N/A	N/A	0.77	N/A	4.60	3
Co ₂ P@CoNPG	0.20	0.90	0.81	69.0	6.68	4
HCNT-Co ₂ P	N/A	0.84	0.77	N/A	N/A	5
BNC/Co ₂ P	0.21	0.92	0.82	N/A	N/A	6
Co _x P-CNTs	N/A	0.84	0.76	N/A	N/A	7
Urchin-like CoP	0.28	0.80	0.70	51.0	4.50	8
Co/CoP-HNC	0.19	0.94	0.83	59.4	N/A	9
CoP NCs	0.20	0.92	0.86	72.1	4.64	10
Co ₂ P-Co ₃ O ₄ /rGO/C -800	0.20	0.91	0.80	58.2	4.96	This work

Table S2 Performance comparison of recent works on cobalt phosphide based ORR catalysts.

References

- J. Gao, J. Wang, L. Zhou, X. Cai, D. Zhan, M. Hou, L. Lai, ACS Appl. Mater. Interfaces, 2019, 11, 10364-10372.
- Y. Yu, J. Ma, C. Chen, Y. Fu, Y. Wang, K. Li, Y. Liao, L. Zheng, X. Zuo, *ChemCatChem*, 2019, 11, 1722-1731.
- 3. V.V.T. Doan-Nguyen, S. Zhang, E.B. Trigg, R. Agarwal, J. Li, D. Su, K.I. Winey, C.B.

Murray, ACS Nano, 2015, 9, 8108-8115.

- 4. H. Jiang, C. Li, H. Shen, Y. Liu, W. Li, J. Li, *Electrochim. Acta*, 2017, 231, 344-353.
- 5. K. Chen, X. Huang, C. Wan, H. Liu, *RSC Adv.*, 2015, **5**, 92893-92898.
- 6. C. Han, X. Bo, Y. Zhang, M. Li, A. Wang, L. Guo, Chem. Commun., 2015, 51, 15015-15018.
- 7. K. Chen, X. Huang, C. Wan, H. Liu, Chem. Commun., 2015, 51, 7891-7894.
- 8. H. Yang, Y. Zhang, F. Hu, Q. Wang, Nano Lett., 2015, 15, 7616-7620.
- 9. Y. Hao, Y. Xu, W. Liu, X. Sun, Mater. Horiz., 2018, 5, 108-115.
- H. Li, Q. Li, P. Wen, T. B. Williams, S. Adhikari, C. Dun, C. Lu, D. Itanze, L. Jiang, D. L. Carroll, G. L. Donati, P. M. Lundin, Y. Qiu, S. M. Geyer, *Adv. Mater.*, 2018, **30**, 1705796.