Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information for:

Dehydrocoupling – An Alternative approach to Functionalizing Germanium

Nanoparticle Surfaces

Md Asjad Hossain,^a Morteza Javadi,^a Haoyang Yu,^a Alyxandra N. Thiessen,^a Nduka Ikpo,^a

Anton O. Oliynyk,^{a,b} and Jonathan G. C. Veinot^{a*}

^aDepartment of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB, Canada. T6G 2N4 E-mail: jveinot@ualberta.ca; Fax: +1-780-492-8231; Tel: +1-780-492-7206

^bManhattan College, Riverdale, New York, United States, 10471

* Corresponding author

Figure S1. Fourier Transform Infra-red (FTIR) spectra and photographs of corresponding octadecylsilyl-GeNPs samples obtained from reactions at the indicated temperatures for 48 h.

Figure S2. FTIR spectra and photographs of octadecylsilyl-GeNP samples obtained by reactions at 180 °C for the indicated times.

NMR peak	Ligand to TMS Proton	Moles of	% Surface	
	ratio	ligand [#]	coverage ^{\$}	
<u>a</u> (-CH ₃)	6.23	3.29×10^{-5}	157	
<u>b</u> (-(CH ₂) ₁₆ -)	61.12	2.85×10^{-5}	182	

Table S1. Determination of Surface Coverage of Octadecyl-GeNPs Using ¹H NMR

 $^{\#}0.03\%$ v/v of TMS in 0.6 mL of CDCl3 solvent has been defined as 1.32×10^{-6} moles.

⁸ Per 7.3 mg of functionalized GeNPs (d = 8 nm) contain 1.81×10^{-5} moles considering *ca*. 18% of atoms on the surface.

Table S2. Determination of Surface Coverage of Octadecylsilyl-GeNPs Using ¹H NMR

NMR peak	Ligand to TMS Proton	Moles of ligand [#]	% Surface	
	ratio		coverage ^{\$}	
<u>a</u> (-CH ₃)	1.53	8.08×10^{-6}	163	
<u>b</u> (-(CH ₂) ₁₆ -)	12.91	6.39×10^{-6}	129	
<u>c</u> Si-(CH ₂)-	0.78	6.18×10^{-6}	125	

 $^{\#}0.03\%$ v/v of TMS in 0.6 mL of CDCl3 solvent has been defined as 1.32×10^{-6} moles.

⁸ Per 2.0 mg of functionalized GeNPs (d = 8 nm) contain 4.96×10^{-6} moles considering *ca*. 18% of atoms on the surface.

Table S3.	Determination	of Surface	Coverage	of Dimeth	yloctadec	ylsilyl-(GeNPs	Using	¹ H NMR

NMR peak	Ligand to TMS Proton	Moles of	% Surface
	ratio	ligand [#]	coverage ^{\$}
<u>a</u> (-CH ₃)	2.27	1.20×10^{-5}	89.6
<u>b</u> (-(CH ₂) ₁₆ -)	22.55	1.12×10^{-5}	83.3
<u>c</u> Si-(CH ₂)-	1.36	1.08×10^{-5}	80.6
<u>d</u> -Si-(CH ₃) ₂ -)	3.50	9.24×10^{-6}	68.9

 $^{\rm \#}0.03\%$ v/v of TMS in 0.6 mL of CDCl_3 solvent has been defined as 1.32×10^{-6} moles.

[§] Per 5.4 mg of functionalized GeNPs (d = 8 nm) contain 1.34×10^{-5} moles considering *ca*. 18% of atoms on the surface.

Figure S3. X-ray diffraction (XRD) of (a) sample holder for $Ge(OH)_2$ and $GeNP/GeO_x$, $Ge(OH)_2$, and $GeNP/GeO_x$ composite and (b) sample holders for (*i*) octadecyl-GeNPs, (*ii*) octadecylsilyl-GeNPs, (*iii*) dimethyloctadecylsilyl-GeNPs, and (*iv*) H-PDMS-GeNPs.

Sample	Octadecyl- GeNPs	Octadecylsilyl- GeNPs	Dimethyl- octadecylsilyl- GeNPs	H-PDMS-GeNPs
Space group	<i>Fd</i> 3 <i>m</i> (No. 227)	<i>Fd</i> 3 <i>m</i> (No. 227)	<i>Fd</i> 3 <i>m</i> (No. 227)	<i>Fd</i> 3 <i>m</i> (No. 227)
<i>a</i> (Å)	5.6515(6)	5.6539(2)	5.6522(2)	5.6561(4)
<i>T</i> (K)	296	296	296	296
Radiation	Cu Kα, λ=1.5406 Å	Cu Kα, λ=1.5406 Å	Cu Kα, λ=1.5406 Å	Cu Kα, λ=1.5406 Å
20 limits	10.00-80.00°	10.00–80.00°	10.00-80.00°	10.00-80.00°
Refinement method	Pawley	Rietveld	Rietveld	Rietveld
No. of data collected	4117 data points	4117 data points	4117 data points	4117 data points
No. of Bragg reflections	7	7	7	7
No. of variables	26	26	26	26
Residuals ^a	$R_{\rm wp} = 0.0468$	$R_{\rm wp} = 0.0289$	$R_{\rm wp} = 0.0355$	$R_{\rm wp} = 0.0322$
	$R_{\rm exp} = 0.0455$	$R_{\rm exp}=0.0249$	$R_{\rm exp}=0.0309$	$R_{\rm exp} = 0.0298$
Goodness of fit	1.02	1.12	1.14	1.08
Synthetic peaks	19.58°	21.31°	24.19°	24.19°
	21.27°			
Integral breadth size	5.9(2) nm	6.5(2) nm	7.4(3) nm	7.8(3) nm
Strain, e_0	0.00016(2)	0.00082(3)	0.00131(4)	0.00155(4)

Table S4. Crystallographic Refinement Data for GeNP Samples

^a $R_{wp} = \left[\sum [w(y_o - y_c)] / \sum w y_o^2\right]^{1/2} R_{exp} = [(N-P+C) / \Sigma (wy_o^2)]^{1/2}; R_{wp} = [\Sigma [w(y_o - y_c)] / \Sigma w y_o^2]^{1/2}; N \text{ is the total number of observations, P is the number of parameters refined, C is the number of constraints used in the refinement.}$

Figure S4. X-ray diffraction (XRD) of octadecylsilane.

Figure S5. Survey X-ray photoelectron (XP) spectra of *(i)* octadecyl-GeNPs, *(ii)* octadecylsilyl-GeNPs, *(iii)* dimethyloctadecylsilyl-GeNPs, and *(iv)* H-PDMS-GeNPs.

Sample	C 1s	O 1s	Ge 3p	Si 2p
Octadecyl-GeNPs	69.17%	15.61%	15.22%	-
Octadecylsilyl-GeNPs	75.24%	13.99%	6.39%	4.43%
Dimethyloctadecylsilyl-GeNPs	52.90%	19.93%	18.73%	8.45%
H-PDMS-GeNPs	29.25%	23.23%	39.95%	7.56%

Table S5. Percentage of Element in the DHC Samples

Figure S6. High-resolution XP spectra of C 1s of octadecyl-GeNPs, octadecylsilyl-GeNPs, dimethyloctadecylsilyl-GeNPs, and H-PDMS-GeNPs (black dashed line = experimental data, gray solid line = complete fit, blue = C-C, red = C-O).

Table S6. Percentage of Oxide in C 1s in DHC Samples

Sample	C-C	C-0
Octadecyl-GeNPs	96.15%	3.85%
Octadecylsilyl-GeNPs	96.3%	3.63%
Dimethyloctadecylsilyl-GeNPs	100%	-
H-PDMS-GeNPs	95.20%	4.80%

Figure S7. Dynamic light scattering (DLS) size distribution of octadecyl-GeNPs, octadecylsilyl-GeNPs, dimethyloctadecyl-GeNPs, and H-PDMS-GeNPs.