Supplemental information for:

Diversity of physical properties of bacterial extracellular membrane vesicles revealed through atomic force microscopy phase imaging

Yousuke Kikuchi,^a Nozomu Obana,^{b,c} Masanori Toyofuku,^{c,d} Noriyuki Kodera,^e Takamitsu Soma,^f Toshio Ando,^e Yoshihiro Fukumori,^{e,g} Nobuhiko Nomura^{*c,d} Azuma Taoka^{*a,e}

^aInstitute of Science and Engineering, Kanazawa university, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
^bTransborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
^cMicrobiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
^dFaculty of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, TARA center, Ibaraki 305-8572, Japan
^eNano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
^fGraduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
^gVice President, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
^{*}To whom correspondence should be addressed at nomura.nobuhiko.ge@u.tsukuba.ac.jp, aztaoka@staff.kanazawa-u.ac.jp

Contents

Supplemental movie 1

Movie S1 AFM phase imaging of *P. aeruginosa* MVs for 60 s. AFM images were recorded at imaging rates of 0.5 s/frame and 100 \times 100 pixels.

Supplemental figure 1-7

Figure S1 Adsorption of MVs on mica substrate. (a) *E. coli* MVs were immobilized on mica surfaces silanized by APTES concentrations of 0.005% (insufficient concentration), 0.02% (optimized concentration), and 0.04% (excess concentration). (b) Time-lapse still images of sheet-like *E. coli* MVs on the mica substrate treated with 0.04% APTES. Addition of 0.1% Triton X-100 surfactant into the imaging chamber at 0 min (lower images) or no addition (upper images). After adding surfactant, the sheet-like structure dissolved. (c) The optimal APTES concentrations for observing *E. coli*, *P. aeruginosa*, *P. denitrificans*, and *B. subtilis* MVs were 0.02%, 0.05%, 0.03%, and 0.0001%, respectively. AFM images were recorded at imaging rates of (a) 2.0 s/frame and 200 \times 200 pixels or (d) 0.5 s/frame and 100 \times 100 pixels.

Figure S2 TEM images of negative-stained MVs. TEM images of (a) *E. coli*, (b) *P. aeruginosa*, (c) *P. denitrificans*, and (d) *B. subtilis* MVs.

Figure S3 Assessment of phase-shift degree of *P. aeruginosa* MVs over 60 s. (a) Phase images of *P. aeruginosa* MVs. Four MVs (1–4) recorded for 60 s at imaging rates of 0.5 s/frame and 100 \times 100 pixels. (b) Time series of phase-shift degree at the tops of the four MVs (1–4).

a To	Topographic image			Phase image			Merged image		
P. aeruginosa	Height	60 nm	0° F	Phase shift	6°	1 2 3 4 5 7 7 6 8 9 10	25 ii 12 13 11 14 24	15 16 17 18 19 20 21 22 23	
b									
MVs	φ (degree)	ϕ_{cal}	MVs	φ (degree)	ϕ_{cal}	MVs	φ (degree)	ϕ_{cal}	
1	3.0	2.3	11	2.2	1.6	21	2.7	2.8	
2	1.6	1.2	12	4.0	3.0	22	2.0	1.3	
3	2.0	1.5	13	3.6	2.7	23	2.3	1.9	
4	2.4	1.8	14	3.4	2.5	24	3.2	1.6	
5	2.6	2.0	15	2.8	2.1	25	1.6	1.6	
6	2.0	1.4	16	3.0	2.2	Beads	φ (degree)	ϕ_{cal}	
7	2.6	1.9	17	3.8	2.9	i	1.3	1.0	
8	3.0	2.3	18	1.8	1.3	ii	1.4	1.1	
9	3.2	2.4	19	2.2	1.7	iii	1.3	1.0	
10	2.8	2.0	20	2.6	1.9				

Figure S4 Normalization of phase-shift degree. (a) AFM topographic image, phase image, and merged image of the mixture of *P. aeruginosa* MVs and polystyrene beads. (b) Obtained and normalized phase-shift values (ϕ_{cal}) of *P. aeruginosa* MVs (1–25) and polystyrene beads (i–iii) from panel a. ϕ_{cal} is the quotient of the phase-shift degree of MV particles (ϕ_{MV}) and the averaged phase-shift value of polystyrene beads (ϕ_{bead}). AFM images were recorded at imaging rates of 2.0 s/frame and 200 \times 200 pixels.

Figure S5 Effect of parachuting on phase image. (a) The merged image of the AFM topographic and phase images from *P. aeruginosa* MVs. (b–c) Profiles of height (upper) and phase-shift (lower) along red solid lines at MV1 and MV2 in panel a. Left–right asymmetry in all profiles was caused by parachuting effect.

Figure S6 Effect on ϕ_{cal} of interaction between mica surface and samples. ϕ_{cal} was averaged across carboxylate polybeads immobilized on the mica coated by APTES at a given concentration. Studied APTES concentrations were 0.05% (n = 23), 0.03% (n = 28), 0.02% (n = 40), and 0.0001% (n = 30). The error bars indicate standard deviation.

Figure S7 Comparison of ϕ_{cal} distributions of two *P*. *denitrificans* MV samples isolated from independent cultures. The ϕ_{cal} distributions of *P*. *denitrificans* MVs from (a) culture a and (b) culture b exhibit no significant differences (χ -square test p = 0.3).