Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

## **Supplementary Information**

## Ferroelectric Rashba semiconductors $AgBiP_2X_6$ (X = S, Se and Te) with valley polarization: An avenue towards electric and nonvolatile control of spintronic devices

Baozeng Zhou\*

Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China

\*Corresponding Authors

baozeng@tju.edu.cn (B. Zhou)

**Table S1.** The calculated lattice constant *a*, thickness *d*, bond length, and displacement of  $Ag^+$  and  $Bi^{3+}$  ions from the centrosymmetric positions.

|                               |       | AgBiP <sub>2</sub> S <sub>6</sub> | AgBiP <sub>2</sub> Se <sub>6</sub> | AgBiP <sub>2</sub> Te <sub>6</sub> |
|-------------------------------|-------|-----------------------------------|------------------------------------|------------------------------------|
| a (Å)                         |       | 6.446                             | 6.745                              | 7.189                              |
| <i>d</i> (Å)                  |       | 3.441                             | 3.586                              | 3.724                              |
| P-P bonds                     |       | 2.263                             | 2.285                              | 2.302                              |
| A. Vlanda                     | long  | 3.061                             | 3.071                              | 3.363                              |
| Ag-X bonds                    | short | 2.650                             | 2.792                              | 2.866                              |
| D: Vhanda                     | long  | 2.878                             | 2.991                              | 3.201                              |
| BI-X bonds                    | short | 2.853                             | 2.975                              | 3.128                              |
| Ag <sup>+</sup> displacement  |       | 0.487                             | 0.428                              | 0.833                              |
| Bi <sup>3+</sup> displacement |       | 0.168                             | 0.194                              | 0.364                              |

| a [Å] | 6.4460170697170192   | 0.0000000000000000000000000000000000000 | 0.0000000000000000000000000000000000000 |
|-------|----------------------|-----------------------------------------|-----------------------------------------|
| b [Å] | -3.2230085334649878  | 5.5824145364076143                      | 0.000000000000000000                    |
| c [Å] | 0.000000000000000000 | 0.0000000000000000000000000000000000000 | 23.5874996185000008                     |
| S     | 0.9779085968483583   | 0.6256006066924290                      | 0.4951239831492113                      |
| S     | 0.3743993933075708   | 0.3523079901559291                      | 0.4951239831492113                      |
| S     | 0.6476920098440710   | 0.0220914031516418                      | 0.4951239831492113                      |
| S     | 0.3491938134844143   | 0.0456602013067838                      | 0.3492060319203195                      |
| S     | 0.9543397986932159   | 0.3035336121776305                      | 0.3492060319203195                      |
| S     | 0.6964663878223694   | 0.6508061865155855                      | 0.3492060319203195                      |
| Р     | 0.6666666666666643   | 0.33333333333333357                     | 0.3727974718048547                      |
| Р     | 0.6666666666666643   | 0.33333333333333357                     | 0.4687315826592956                      |
| Ag    | 0.000000000000000000 | 0.0000000000000000000000000000000000000 | 0.4428369518611184                      |
| Bi    | 0.33333333333333357  | 0.6666666666666643                      | 0.4150239814661507                      |

Table S2. The lattice vectors and fractional coordinates of each atom in  $AgBiP_2S_6$  monolayer.

=

| a [Å] | 6.7451425251032466   | 0.00000000000000000                     | 0.00000000000000000  |
|-------|----------------------|-----------------------------------------|----------------------|
| b [Å] | -3.3725712622740640  | 5.8414647790463770                      | 0.000000000000000000 |
| c [Å] | 0.000000000000000000 | 0.0000000000000000000000000000000000000 | 23.5874996185000008  |
| Se    | 0.9899088918095423   | 0.6339494198664021                      | 0.4986792991742209   |
| Se    | 0.3660505801335979   | 0.3559594719431403                      | 0.4986792991742209   |
| Se    | 0.6440405280568597   | 0.0100911081904575                      | 0.4986792991742209   |
| Se    | 0.3329223877526660   | 0.0411902968239272                      | 0.3466420743351128   |
| Se    | 0.9588097031760727   | 0.2917320909287389                      | 0.3466420743351128   |
| Se    | 0.7082679090712611   | 0.6670776122473341                      | 0.3466420743351128   |
| Р     | 0.6666666666666643   | 0.33333333333333357                     | 0.3721448632042433   |
| Р     | 0.6666666666666643   | 0.33333333333333357                     | 0.4690332653703307   |
| Ag    | 0.000000000000000000 | 0.0000000000000000000000000000000000000 | 0.4408164250831848   |
| Bi    | 0.33333333333333357  | 0.6666666666666643                      | 0.4144213588142523   |

Table S3. The lattice vectors and fractional coordinates of each atom in  $AgBiP_2Se_6$  monolayer.

| a [Å] | 7.1894800363574678                      | 0.000000000000000000 | 0.0000000000000000000000000000000000000 |
|-------|-----------------------------------------|----------------------|-----------------------------------------|
| b [Å] | -3.5947399253376240                     | 6.2262724050884772   | 0.0000000000000000000000000000000000000 |
| c [Å] | 0.000000000000000000                    | 0.000000000000000000 | 23.5874996185000008                     |
| Те    | 0.0130186388505032                      | 0.6345696391814084   | 0.5014714336207148                      |
| Te    | 0.3654303608185918                      | 0.3784489996690950   | 0.5014714336207148                      |
| Te    | 0.6215510003309047                      | -0.0130186388505031  | 0.5014714336207148                      |
| Te    | 0.2981748686531853                      | 0.0414301448793267   | 0.3435898436919037                      |
| Te    | 0.9585698551206728                      | 0.2567447237738584   | 0.3435898436919037                      |
| Te    | 0.7432552762261413                      | 0.7018251313468150   | 0.3435898436919037                      |
| Р     | 0.6666666666666643                      | 0.33333333333333357  | 0.3673332899681562                      |
| Р     | 0.6666666666666643                      | 0.33333333333333357  | 0.4649091420753992                      |
| Ag    | 0.0000000000000000000000000000000000000 | 0.000000000000000000 | 0.4578673389448687                      |
| Bi    | 0.33333333333333357                     | 0.6666666666666643   | 0.4070864300737347                      |

Table S4. The lattice vectors and fractional coordinates of each atom in  $AgBiP_2Te_6$  monolayer.

-

|                      | $E_{\rm R}$ (meV) | $\alpha_{\rm R} ({\rm eV \AA})$ | $E_{g}$ (eV) |
|----------------------|-------------------|---------------------------------|--------------|
| ε = +8%              | 1.3               | 0.9                             | 0.82         |
| $\epsilon = +6\%$    | 1.8               | 1.7                             | 0.69         |
| $\epsilon = +4\%$    | 2.5               | 3.1                             | 0.52         |
| $\epsilon = +2\%$    | 4.9               | 6.1                             | 0.50         |
| $\epsilon = 0\%$     | 6.5               | 6.5                             | 0.49         |
| $\varepsilon = -2\%$ | 7.7               | 6.8                             | 0.48         |
| $\epsilon = -4\%$    | 8.9               | 7.2                             | 0.38         |
| $\epsilon = -6\%$    | 5.9               | 4.7                             | 0.24         |
| ε=-8%                |                   | —                               | 0.02         |

**Table S5.** The calculated Rashba energy  $(E_R)$ , Rashba parameter  $(\alpha_R)$ , and band-gap  $(E_g)$  under different biaxial strain.



Fig. S1. The phonon band dispersions and potential energy fluctuations of (a) AgBiP<sub>2</sub>S<sub>6</sub> and (b) AgBiP<sub>2</sub>Se<sub>6</sub> monolayers. The inset shows the corresponding structure at 300 K after the simulation for 5 ps.



**Fig. S2.** The total DOS and orbital-resolved PDOS for each atom of AgBiP<sub>2</sub>X<sub>6</sub> monolayers calculated by HSE06 method.



Fig. S3. Calculated band structures of (a-c) AgBiP<sub>2</sub>X<sub>6</sub> monolayers, (d-f) AgBiP<sub>2</sub>X<sub>6</sub> bilayers, and (g-i) AgBiP<sub>2</sub>X<sub>6</sub> multilayers by PBE method. The Fermi level is set to zero. (j) The structure of AgBiP<sub>2</sub>X<sub>6</sub> multilayer with interlayer anti-ferroelectric.



Fig. S4. Calculated band structures of  $AgBiP_2X_6$  monolayers with SOC. The spin projections of Bip orbitals along z direction are represented by red and blue lines, which represent the spinup and spin-down states, respectively. The Fermi level is set to zero.



Fig. S5. Calculated band structures of compressed AgBiP<sub>2</sub>Te<sub>6</sub> monolayers with SOC. (a) ε = -2%.
(b) ε = -4%. The spin projections of Bi-*p* orbitals along *z* direction are represented by red and blue lines, which represent the spin-up and spin-down states, respectively. The Fermi level is set to zero.