

Electronic Supporting Information

Dynamic band alignment modulation of ultrathin WO_x/ZnO stack for high on/off ratio field-effect switching applications

Ho-In Lee ^a, Jinseon Park ^b, Yun Ji Kim ^a, Sunwoo Heo ^a, Jeongwoon Hwang ^d, Seung-Mo Kim ^a, Yongsu Lee ^a, Kyeongjae Cho ^c, Myung Mo Sung ^{*b}, and Byoung Hun Lee ^{*a}

a. Center for Emerging Electronic Devices and Systems, School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdangwagi-ro 123, Buk-gu, Gwangju 61005, South Korea, E-mail: bhl@gist.ac.kr

b. Department of Chemistry, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, South Korea, E-mail: smm@hanyang.ac.kr

c. Department of Materials Science and Engineering, University of Texas at Dallas, 800 W Campbell road, Richardson, Texas 75080, USA.

d. Department of Physics Education, Chonnam National University, Yongbong-ro 77, Buk-gu, Gwangju 61186, South Korea.

Figure S1. (a)-(c) EDS analysis of WO_x/ZnO stacked structure (a) W (b) Zn (c) O.

(a)

(b)

Figure S2. (a)-(b) I_d - V_d characteristics of WO_x/ZnO FET. (a) Varying V_g from -5 V to 15 V at $T = 225$ K. (b) Varying temperature from 225 K to 305 K at $V_g = 0$ V.

Figure S3. J_d - V_g characteristics of WO_x/ZnO FET with different thickness of (a) WO_x and (b) ZnO measured at $V_d = 0.1 \text{ V}$.

When WO_x is 6 nm, metallic conduction was observed as shown in Figure S3 (a). On the other hand, WO_x is not uniform for the process condition targeting below 4 nm. Thus, somewhat narrow window around 4 nm was chosen to observe the unique conduction behavior.

In the similar way, the thickness below 5 nm ZnO showed deteriorated property as shown in Figure S3 (b). As a result, 5 nm was chosen to obtain a uniform conduction behavior at the thin film limit.

Figure S4. Static variations of off current density for overlapped WO_x/ZnO and ZnO FET. The eighteen devices for each of WO_x/ZnO and ZnO FET were measured.