Supplementary Information for:

Shear-induced liquid-crystalline phase transition behavior of colloidal solutions of hydroxyapatite nanorod composites

Satoshi Kajiyama,^a Hiroki Iwase,^b Masanari Nakayama,^a Rino Ichikawa,^a Daisuke Yamaguchi,^a Hideki Seto,^{*,c} Takashi Kato^{*,a}

^aDepartment of Chemistry and Biotechnology, School of Engineering, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
^bNeutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirataka, Tokai, Ibaraki 319-1106, Japan
^cJ-PARC Center, High Energy Accelerator Research Organization, 203-1 Shirataka, Tokai, Ibaraki 319-1106, Japan.

Fig. S1 Schematic illustration for Rheo-SANS measurement of colloidal solutions of HAP-based nanocomposites.

Fig. S2 2D radial SANS profiles of a colloidal solution of HAP-based nanocomposites at 3.3 vol% with various shear rates.

Fig. S3 2D tangential SANS profiles of a colloidal solution of HAP-based nanocomposites at 3.3 vol% with various shear rates.

Fig. S4 2D radial SANS profiles of a colloidal solution of HAP-based nanocomposites at 4.4 vol% with various shear rates.

Fig. S5 2D tangential SANS profiles of a colloidal solution of HAP-based nanocomposites at 4.4 vol% with various shear rates.

Fig. S6 2D radial SANS profiles of a colloidal solution of HAP-based nanocomposites at 6.7 vol% with various shear rates.

Fig. S7 2D tangential SANS profiles of a colloidal solution of HAP-based nanocomposites at 6.7 vol% with various shear rates.

Fig. S8 2D radial SANS profiles of a colloidal solution of HAP-based nanocomposites at 8.7 vol% with various shear rates.

Fig. S9 2D tangential SANS profiles of a colloidal solution of HAP-based nanocomposites at 8.7 vol% with various shear rates.

Fig. S10 2D radial SANS profiles of a colloidal solution of HAP-based nanocomposites at 9.7 vol% with various shear rates.

Fig. S11 2D tangential SANS profiles of a colloidal solution of HAP-based nanocomposites at 9.7 vol% with various shear rates.

Fig. S12 Sector-averaged SANS curves for a colloidal solution of HAP-based nanocomposites at 3.3 vol% under various shear rates with an azimuthal angle of $\pm 10^{\circ}$.

Fig. S13 Sector-averaged SANS curves for a colloidal solution of HAP-based nanocomposites at 4.4 vol% under various shear rates with an azimuthal angle of $\pm 10^{\circ}$.

Fig. S14 Sector-averaged SANS curves for a colloidal solution of HAP-based nanocomposites at 6.7 vol% under various shear rates with an azimuthal angle of $\pm 10^{\circ}$.

Fig. S15 Sector-averaged SANS curves for a colloidal solution of HAP-based nanocomposites at 8.7 vol% under various shear rates with an azimuthal angle of $\pm 10^{\circ}$.

Fig. S16 Sector-averaged SANS curves for a colloidal solution of HAP-based nanocomposites at 9.7 vol% under various shear rates with an azimuthal angle of $\pm 10^{\circ}$.

Fig. S17 Plots of Alignment degree vs shear stress of colloidal solutions of HAP-based nanocomposites with various concentrations, showing the required shear stress for the alignment treatment.

Fig. S18 Peak position Q_{M1} values in SANS profiles for colloidal solutions of HAP-based nanocomposites under shearing force. \Box : Q_x radial, $\blacksquare:Q_y$ radial, $\circ: Q_x$ tangential, and $\bullet: Q_y$ tangential.

Fig. S19 Viscosity plots under shearing forces of colloidal solutions of HAP-based nanocomposites with various concentrations; (a) 3.3, (b) 4.4, (c) 6.7, (d) 8.7, and (e) 9.7 vol%.

Fig. S20 Shear stress plots under shearing forces of colloidal solutions of HAP-based nanocomposites with various concentrations; (a) 3.3, (b) 4.4, (c) 6.7, (d) 8.7, and (e) 9.7 vol%.