Supporting Information

Regioselective Synthesis of Spirodihydrofuran Barbiturates and Spirocyclopropane Barbiturates *via* Cascade Reaction

Xuebin Yan,* Pei Shao, Xixi Song, Chaofei Zhang, Chang Lu, Songtao Liu, Yanli Li

The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China E-mail: yxb@zzu.edu.cn

Table of Contents

1. General Information	S2
2. Preparation of Substrates	S2
3. General procedure for spirocyclopropane barbiturates 3	S2
4. General procedure for spirodihydrofuran barbiturates 4	S2
5. Characterization Data of the Products	S2
6. References	S12
7. The Single Crystal X-ray Diffraction Study of 3aa	S12
8. Copies of 1H and 13C NMR Spectra for the Products	S13

1. General Information

¹H and ¹³C NMR spectra were recorded on a Bruker DPX-400 spectrometer using CDCl₃ as the solvent and TMS as an internal standard. IR spectra were determined on a Thermo Nicolet IR200 unit. High resolution mass spectra (HRMS) were obtained on an Agilent Technologies 6540 UHD Accuratemass Q-TOF LC/MS using the ESI technique. X-ray crystallographic data were collected using an Agilent Xcalibur Eos Gemini diffractometer at 293(2) K. Melting points were determined using an aXT5 Apparatus and are uncorrected. All reagents were obtained from commercial suppliers without further purification. All solvents were used directly without further purification. Chromatography was performed on silica gel (100–200 mesh). Petroleum ether and ethyl acetate were used for column chromatography.

2. Preparation of Substrates

All of the barbiturate-based olefin substrates were prepared from the corresponding aldehydes and N,N'-dimethylbarbituric acid according to the reported procedure.¹

3. General procedure for spirocyclopropane barbiturates 3

Barbiturate-based olefin 1 (1.0 mmol) was added to a stirred mixture of the acetylacetone (1.5 mmol), and K_2CO_3 (1.3 mmol) in ethyl acetate (10 mL), followed by NBS (1.5 mmol). The reaction mixture was stirred at r.t. and monitored by TLC. After the reaction was complete, the mixture was filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (100–200 mesh) using petroleum: ethyl acetate (6:1, v/v) as an eluent to afford the pure product **3**.

4. General procedure for spirodihydrofuran barbiturates 4

Barbiturate-based olefin 1 (1.0 mmol) was added to a stirred solution of the acetylacetone (1.5 mmol), and DBU (1.1 mmol) in CH_2Cl_2 (10 mL), then NBS (1.5 mmol) was added after an hour. The reaction solution was stirred at r.t. and monitored by TLC. After the reaction was complete, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (100–200 mesh) using petroleum: ethyl acetate (4:1, v/v) as an eluent to afford the pure product **4**.

5. Characterization Data of the Products

1,1-diacetyl-5,7-dimethyl-2-phenyl-5,7-diazaspiro[2,5]octane-4,6,8-trione (3a)

White solid (72% yield); mp 151-153 °C; ¹H NMR (400MHz, CDCl₃) δ 7.40 – 7.28 (m, 5H), 4.08 (s, 1H), 3.39 (s, 3H), 3.29 (s, 3H), 2.47 (s, 3H), 2.17 (s, 3H); ¹³C NMR (101MHz, CDCl₃) δ 197.9, 195.9, 166.0, 163.2, 150.9, 130.2, 129.8, 128.2, 67.2, 49.1, 42.4, 29.9, 29.3, 28.9, 28.6; IR (KBr, cm⁻¹): 3020, 2959, 2926, 1682, 1456, 1376, 1243, 813, 754, 699, 477; HR-MS (ESI) calcd for C₁₈H₁₉N₂O₅⁺ [(M+H)⁺] 343.1284, Found 343.1285.

White solid (63% yield); mp 163-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 7.0 Hz, 1H), 7.41 – 7.19 (m, 4H), 3.88 (s, 1H), 3.41 (d, J = 0.6 Hz, 3H), 3.24 (s, 3H), 2.53 (s, 3H), 2.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 196.0, 166.0, 163.3, 151.0, 134.6, 132.8, 129.6, 129.1, 128.9, 127.0, 67.3, 46.5, 42.8, 29.4, 29.3, 29.0, 28.8; IR (KBr, cm⁻¹): 3020, 2959, 2925, 1681, 1457, 1432, 1376, 1287, 1181, 758; HR-MS (ESI) calcd for C₁₈H₁₈ClN₂O₅⁺ [(M+H)⁺] 377.0899, Found 377.0897.

2-(2-bromophenyl)-1,1-diacetyl-5,7-dimethyl-5,7-diazaspiro[2,5]octane-4,6,8-trione (3c)

White solid (76% yield); mp 181-183 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 7.8 Hz, 1H), 7.51 (dd, J = 8.0, 1.1 Hz, 1H), 7.37 (td, J = 7.7, 1.1 Hz, 1H), 7.19 (td, J = 7.8, 0.9 Hz, 1H), 3.87 (s, 1H), 3.41 (s, 3H), 3.24 (s, 3H), 2.53 (s, 3H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 196.3, 166.2, 163.4, 151.2, 133.2, 132.6, 130.8, 130.0, 127.8, 125.4, 77.5, 77.2, 76.9, 68.0, 48. 9, 43.3, 29.6, 29.5, 29.2, 29.0; IR(KBr, cm⁻¹): 3021, 2961, 2925, 1682, 1458, 1430, 1375, 1287, 1243, 1181, 1075, 757; HR-MS (ESI) calcd for C₁₈H₁₈BrN₂O₅⁺ [(M+H)⁺] 421.0394, Found 421.0393.

1,1-diacetyl-5,7-dimethyl-2-(2-fluorophenyl)- 5,7-diazaspiro[2,5]octane-4,6,8-trione (3d)

White solid (62% yield); mp 159-161 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (t, J = 7.7 Hz, 1H), 7.30 (td, J = 7.3, 1.0 Hz, 1H), 7.18 (td, J = 7.7, 0.8 Hz, 1H), 6.98 (ddd, J = 10.5, 8.3, 0.8 Hz, 1H), 3.85 (s, 1H), 3.40 (s, 3H), 3.28 (s, 3H), 2.51 (s, 3H), 2.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.66, 195.59, 165.84, 163.57, 161.1 (d, $J_{C-F} = 245.4$ Hz), 150.92, 132.5 (d, $J_{C-F} = 2.5$ Hz), 130.0 (d, $J_{C-F} = 8.7$ Hz), 124.1 (d, $J_{C-F} = 3.4$ Hz), 117.8 (d, $J_{C-F} = 13.0$ Hz), 114.9 (d, $J_{C-F} = 21.8$ Hz), 65.97, 41.9 (d, $J_{C-F} = 1.8$ Hz), 41.4 (d, $J_{C-F} = 2.2$ Hz), 29.50, 29.30, 28.85; IR (KBr, cm⁻¹): 3021, 2961, 2925, 2362, 1677, 1457, 1375, 1288, 1243, 1184, 761; HR-MS (ESI) calcd for C₁₈H₁₈FN₂O₅⁺ [(M+H)⁺] 361.1194, Found 361.1191.

1,1-diacetyl-5,7-dimethyl-2-(2-methylphenyl)- 5,7-diazaspiro[2,5]octane-4,6,8-trione (3e)

White solid (77% yield); mp 147-149 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.3 Hz, 1H), 7.29 – 7.11 (m, 3H), 3.95 (s, 1H), 3.41 (s, 3H), 3.27 (s, 3H), 2.48 (s, 3H), 2.16 (s, 3H), 2.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.19, 196.25, 166.08, 163.23, 150.91, 137.19, 130.44, 130.26, 129.18, 128.44, 125.95, 67.78, 47.94, 42.47, 29.64, 29.36, 28.94, 28.87, 19.99; IR (KBr, cm⁻¹): 3021, 2957, 2924, 1682, 1455, 1371, 1285, 1240,1180, 756; HR-MS (ESI) calcd for C₁₉H₂₁N₂O₅⁺ [(M+H)⁺] 357.1445, Found 357.1444.

1,1-diacetyl-5,7-dimethyl-2-(3-methylphenyl)- 5,7-diazaspiro[2,5]octane-4,6,8-trione (3f)

White solid (88% yield); mp 130-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.16 (m, 2H), 7.12 (t, J = 7.7 Hz, 2H), 4.04 (s, 1H), 3.39 (s, 3H), 3.29 (s, 3H), 2.46 (s, 3H), 2.34 (s, 3H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.0, 195.9, 166.0, 163.2, 150.9, 137.9, 130.9, 129.7, 129.0, 128.1, 127.1, 67.1, 49.3, 42.5, 30.0, 29.3, 28.9, 28.6, 21.4; IR (KBr, cm⁻¹): 3021, 2957, 2924, 1682, 1456, 1374, 1285, 1241, 1182, 755; HR-MS (ESI) calcd for C₁₉H₂₁N₂O₅⁺ [(M+H)⁺] 357.1445, Found 357.1444.

1,1-diacetyl-5,7-dimethyl-2-(3-methoxyphenyl)- 5,7-diazaspiro[2,5]octane-4,6,8-trione (3g)

White solid (53% yield); mp 137-139 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, J = 16.3, 8.3 Hz, 1H), 7.00 (s, 1H), 6.89 (d, J = 7.6 Hz, 1H), 6.84 (dd, J = 8.2, 2.2 Hz, 1H), 4.05 (s, 1H), 3.80 (s, 3H), 3.38 (s, 3H), 3.29 (s, 3H), 2.46 (s, 3H), 2.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197. 9, 195.9, 166.0, 163.2, 159.3, 150.9, 131.3, 129.2, 122.3, 116.3, 113.5, 67.1, 55.3, 49.0, 42.5, 30.0, 29.3, 28.9, 28.6; IR (KBr, cm⁻¹): 3021, 2961, 2926, 1682, 1458, 1429, 1376, 1286, 1246, 1174, 755; HR-MS (ESI) calcd for C₁₉H₂₁N₂O₆⁺ [(M+H)⁺] 373.1394, Found 373.1393.

2-(4-chlorophenyl)-1,1-diacetyl-5,7-dimethyl-5,7-diazaspiro[2,5]octane-4,6,8-trione (3h)

Colourless needle (73% yield); mp 190-192 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.8 Hz, 2H), 7.29 (d, J = 8.7 Hz, 2H), 4.01 (s, 1H), 3.39 (s, 3H), 3.29 (s, 3H), 2.46 (s, 3H), 2.16 (s, 3H); ¹³C NMR (101MHz, CDCl₃) δ 197.6, 195.7, 165.7, 163.1, 150.7, 134.2, 131.7, 128.4, 128.3, 67.1, 48.0, 42.4, 29.7, 29.4, 29.0, 28.7; IR (KBr, cm⁻¹): 3020, 2959, 2924, 1681, 1455, 1374, 1283, 1244, 841, 756; HR-MS (ESI) calcd for C₁₈H₁₈ClN₂O₅⁺ [(M+H)⁺] 377.0899, Found: 377.0902.

2-(4-bromophenyl)-1,1-diacetyl-5,7-dimethyl-5,7-diazaspiro[2,5]octane-4,6,8-trione (3i)

White solid (64% yield); mp 191-193 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.5 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 3.99 (s, 1H), 3.38 (s, 3H), 3.31 (s, 3H), 2.44 (s, 3H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 195.7, 165.7, 163.1, 150.7, 132.0, 131.3, 128.8, 122.4, 67.0, 47.9, 42.3, 29.7, 29.4, 29.0, 28.7; IR (KBr, cm⁻¹): 3020, 2959, 2924, 2362, 1681, 1457, 1374, 1241, 1180, 837, 755; HR-MS (ESI) calcd for C₁₈H₁₈BrN₂O₅⁺ [(M+H)⁺] 421.0394, Found 421.0393.

1,1-diacetyl-5,7-dimethyl-2-(4-fluorophenyl)- 5,7-diazaspiro[2,5]octane-4,6,8-trione (3j)

White solid (74% yield); mp 185-187 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.31 (m, 2H), 7.05 – 6.96 (m, 2H), 4.02 (s, 1H), 3.38 (s, 3H), 3.28 (s, 3H), 2.46 (s, 3H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 195.8, 165.8, 163.1, 162.4 (d, *J* = 248.2 Hz), 150.8, 132.2 (d, *J* = 8.2 Hz), 125.5 (d, *J* = 3.4 Hz), 115.2 (d, *J* = 21.6 Hz), 67.1, 48.3, 42.6, 29.7, 29.3, 28.9, 28.6; IR(KBr, cm⁻¹): 3020, 2959, 2924, 1682, 1513, 1457, 1376, 1286, 1236, 1172, 755; HR-MS (ESI) calcd for C₁₈H₁₈FN₂O₅⁺ [(M+H)⁺] 361.1194, Found 361.1192.

1,1-diacetyl-5,7-dimethyl-2-(4-nitrophenyl)-5,7-diazaspiro[2,5]octane-4,6,8-trione (3k)

White solid (73% yield); mp 197-199 °C; ¹H NMR (400MHz, CDCl₃) δ 8.18 (d, J = 8.8Hz, 2H), 7.59 (d, J = 8.3Hz, 2H), 4.10 (s, 1H), 3.40 (s, 3H), 3.31 (s, 3H), 2.50 (s, 3H), 2.15 (s, 3H); ¹³C NMR (101MHz, CDCl₃) δ 197.1, 195.4, 165.4, 163.1, 150.5, 147.4, 137.2, 131.4, 123.2, 67.1, 46.4, 42.0, 29.7, 29.5, 29.1, 28.7; IR (KBr, cm⁻¹): 2959, 2926, 1682, 1519, 1458, 1375, 1350, 1288, 1181, 845, 756; HR-MS (ESI) calcd for C₁₈H₁₈N₃O₇⁺ [(M+H)⁺] 388.1139, Found 388.1138.

1,1-diacetyl-5,7-dimethyl-2-(4-methylphenyl)- 5,7-diazaspiro[2,5]octane-4,6,8-trione (3m)

White solid (74% yield); mp 131-133 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 4.04 (s, 1H), 3.38 (s, 3H), 3.28 (s, 3H), 2.46 (s, 3H), 2.33 (s, 3H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.0, 196.0, 166.0, 163.2, 150.9, 138.1, 130.1, 128.9, 126.6, 67.2, 49.4, 42.6, 29.9, 29.3, 28.9, 28.7, 21.2; IR (KBr, cm⁻¹): 3021, 2961, 2924, 1683, 1456, 1371, 1284, 1244, 1178, 1076, 759, 473; HR-MS (ESI) calcd for C₁₉H₂₁N₂O₅⁺ [(M+H)⁺] 357.1445, Found 357.1447.

1,1-diacetyl-5,7-dimethyl-2-naphthalen-1-yl-5,7-diazaspiro[2,5]octane-4,6,8-trione (3n)

White solid (66% yield); mp 171-173 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.91 (m, 1H), 7.90 – 7.85 (m, 1H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 7.3 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.44 (t, *J* = 8.2 Hz, 1H), 4.41 (s, 1H), 3.48 (s, 3H), 3.12 (s, 3H), 2.51 (s, 3H), 2.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.5, 196.8, 166.2, 163.3, 150.9, 133.5, 132.5, 129.3, 129.2, 128.7, 126.9, 126.0, 125.9, 125.1, 122.5, 67.2, 47.5, 42.5, 30.4, 29.5, 28.9, 28.8; IR (KBr, cm⁻¹): 3023, 2962, 1683, 1454, 1373, 1287, 1245, 1178, 1081, 755, 472; HR-MS (ESI) calcd for C₂₂H₂₁N₂O₅⁺ [(M+H)⁺] 393.1445, Found 393.1444.

3-acetyl-4-phenyl-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4a)

White solid (77% yield); mp 137-139 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 3H), 7.10 – 7.02 (m, 2H), 4.73 (q, *J* = 1.4 Hz, 1H), 3.41 (s, 3H), 2.56 (s, 3H), 2.55 (d, *J* = 1.4 Hz, 3H), 1.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.1, 169.8, 166.9, 164.3, 150.1, 135.4, 129.1, 128.9, 128.3, 112.9, 88.6, 62.1, 29.6, 29.4, 28.3, 15.0; IR (KBr, cm⁻¹): 3020, 2961, 2926, 1690, 1635, 1609, 1446, 1377, 1240, 1046, 953, 753, 705; HR-MS (ESI) calcd for C₁₈H₁₉N₂O₅⁺ [(M+H) ⁺] 343.1284, Found 343.1288.

3-acetyl-4-(2-chlorophenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4b)

White solid (94% yield); mp 212-214 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.31 (m, 1H), 7.31 - 7.20 (m, 2H), 7.18 - 7.12 (m, 1H), 5.39 (d, J = 1.2 Hz, 1H), 3.38 (s, 3H), 2.69 (s, 3H), 2.56 (d, J = 1.2 Hz, 3H), 1.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.7, 170.1, 166.5, 164.3, 150.1, 133.6, 133.2, 130.9, 130.1, 129.4, 127.5, 113.0, 87.4, 56.7, 29.3, 29.2, 28.4, 14.9; IR(KBr, cm⁻¹): 2959, 2927, 1697, 1443, 1378, 1234, 1130, 1096, 1043, 754; HR-MS (ESI) calcd for C₁₈H₁₈ClN₂O₅⁺ [(M+H)⁺] 377.0899, Found 377.0895.

3-acetyl-4-(2-bromophenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4c)

White solid (78% yield); mp 263-264 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 7.9, 1.1 Hz, 1H), 7.31 (td, J = 7.6, 1.1 Hz, 1H), 7.21 – 7.12 (m, 2H), 5.39 (d, J = 1.4 Hz, 1H), 3.38 (s, 3H), 2.69 (s, 3H), 2.56 (d, J = 1.4 Hz, 3H), 1.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.8, 170.0, 166.4, 164.3, 150.0, 134.8, 132.7, 131.1, 130.4, 128.1, 124.3, 113.4, 87.4, 59.4, 29.4, 29.2, 28.4, 14.9; IR (KBr, cm⁻¹): 3021, 2961, 2925, 1696, 1623, 1442, 1377, 1339, 1220, 1134, 1040, 945, 795, 750; HR-MS (ESI) calcd for C₁₈H₁₈BrN₂O₅⁺ [(M+H)⁺] 421.0394, Found 421.0393.

3-acetyl-4-(2-fluorophenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4d)

White solid (92% yield); mp 163-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (dd, J = 13.0, 5.9 Hz, 1H), 7.18 – 7.00 (m, 3H), 5.17 (s, 1H), 3.40 (s, 3H), 2.69 (s, 3H), 2.55 (s, 3H), 1.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.6, 170.2, 166.6, 164.3, 160.3 (d, $J_{C-F} = 245.8$ Hz), 150.0, 130.6 (d, $J_{C-F} = 8.4$ Hz), 130.2 (d, $J_{C-F} = 2.5$ Hz), 124.8 (d, $J_{C-F} = 3.5$ Hz), 122.6 (d, $J_{C-F} = 13.3$ Hz), 115.1 (d, $J_{C-F} = 21.9$ Hz), 111.8, 87.4, 53.0 (d, $J_{C-F} = 4.3$ Hz), 29.4, 29.3, 28.3, 15.1; IR (KBr, cm⁻¹): 3021, 2958, 2927, 1693, 1637, 1612, 1447, 1378, 1233, 1130, 1045, 950, 758; HR-MS (ESI) calcd for C₁₈H₁₈FN₂O₅⁺ [(M+H)⁺] 361.1194, Found 361.1195.

3-acetyl-4-(2-methylphenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4e)

White solid (75% yield); mp 211-213 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.09 (m, 3H), 7.04 (d, J = 6.6 Hz, 1H), 5.09 (s, 1H), 3.37 (s, 3H), 2.59 (s, 3H), 2.54 (s, 3H), 2.24 (s, 3H), 1.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.9, 169.1, 166.9, 164.6, 150.2, 135.5, 133.4, 130.5, 129.1, 128.6, 126.7, 114.3, 88.4, 57.0, 29.3, 29.2, 28.4, 18.9, 14.9; IR (KBr, cm⁻¹): 3021, 2957, 2925, 1690, 1636, 1611, 1445, 1376, 1233,1128, 1045, 948, 755; HR-MS (ESI) calcd for C₁₉H₂₁N₂O₅⁺ [(M+H)⁺] 357.1445, Found 357.1444.

3-acetyl-4-(3-methylphenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4f)

White solid (78% yield); mp 201-203 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, J = 7.6 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 6.88 – 6.78 (m, 2H), 4.69 (d, J = 1.2 Hz, 1H), 3.41 (s, 3H), 2.57 (s, 3H), 2.54 (d, J = 1.3 Hz, 3H), 2.31 (s, 3H), 1.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.2, 169.8, 166.9, 164.3, 150.1, 138.8, 135.2, 129.8, 128.9, 128.8, 125.4, 112.8, 88.7, 62.1, 29.6, 29.3, 28.3, 21.3, 14.9; IR (KBr, cm⁻¹): 3020, 2957, 2925, 1690, 1634, 1608, 1444, 1376, 1126, 1047, 950, 754, 706; HR-MS (ESI) calcd for C₁₉H₂₁N₂O₅⁺ [(M+H)⁺] 357.1445, Found 357.1443.

3-acetyl-4-(3-methoxyphenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4g)

White solid (62% yield); mp 154-156 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, *J* = 7.9 Hz, 1H), 6.85 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.64 (d, *J* = 7.4 Hz, 1H), 6.57 (s, 1H), 4.70 (s, 1H), 3.76 (s, 3H), 3.40 (s, 3H), 2.63 (s, 3H), 2.54 (d, *J* = 1.3 Hz, 3H), 1.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.1, 169.9, 166.9, 164.2, 160.0, 150.1, 136.9, 130.0, 120.6, 114.7, 113.6, 112.8, 88.6, 62.1, 55.3, 29.6, 29.3, 28.4, 14.9; IR (KBr, cm⁻¹): 3019, 2957, 2926, 1690, 1635, 1606, 1444, 1377, 1279, 1045, 754; HR-MS (ESI) calcd for C₁₉H₂₁N₂O₆⁺ [(M+H)⁺] 373.1394, Found 373.1393.

3-acetyl-4-(4-chlorophenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4h)

White solid (77% yield); mp 207-209 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.6 Hz, 2H), 7.00 (d, J = 8.3 Hz, 2H), 4.68 (d, J = 1.4 Hz, 1H), 3.40 (s, 3H), 2.66 (s, 3H), 2.55 (d, J = 1.4 Hz, 3H), 2.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 169.8, 166.6, 164.1, 150.0, 135.0, 134.0, 129.6, 129.1, 113.3, 88.2, 61.3, 29.6, 29.4, 28.4, 15.1; IR (KBr, cm⁻¹): 3021, 2960, 2923, 1706, 1625, 1444, 1379, 1342, 1221, 1041, 955, 847, 797, 752; HR-MS (ESI) calcd for C₁₈H₁₈CIN₂O₅⁺ [(M+H)⁺] 377.0899, Found 377.0896.

3-acetyl-4-(4-bromophenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4i)

White solid (78% yield); mp 178-180 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.1 Hz, 2H), 4.67 (s, 1H), 3.40 (s, 3H), 2.66 (s, 3H), 2.55 (d, J = 1.1 Hz, 3H), 2.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 169.9, 166.6, 164.1, 150.0, 134.5, 132.0, 129.9, 123.2, 113.3, 88.1, 61.4, 29.6, 29.4, 28.5, 15.1; IR (KBr, cm⁻¹): 3021, 2961, 2925, 1696, 1623, 1442, 1377, 1339, 1220, 1134, 1040, 945, 795, 750; HR-MS (ESI) calcd for C₁₈H₁₈BrN₂O₅⁺ [(M+H)⁺] 421.0394, Found 421.0392.

3-acetyl-4-(4-fluorophenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4j)

White solid (78% yield); mp 160-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.12 – 6.94 (m, 4H), 4.70 (d, J = 1.4 Hz, 1H), 3.40 (s, 3H), 2.66 (s, 3H), 2.55 (d, J = 1.4 Hz, 3H), 1.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192. 7, 169.7, 166.7, 164.2, 162.9 (d, $J_{C-F} = 249.2$ Hz), 150.1, 131.3 (d, $J_{C-F} = 3.4$ Hz), 130.1 (d, $J_{C-F} = 8.1$ Hz), 115.9 (d, $J_{C-F} = 26.0$ Hz), 113.3, 88.3, 61.3, 29.6, 29.4, 28.5, 15.1; IR (KBr, cm⁻¹): 3019, 2958, 2925, 1690, 1635, 1607, 1509, 1443, 1377, 1232, 1128, 1046, 949, 850, 755; HR-MS (ESI) calcd for C₁₈H₁₈FN₂O₅⁺ [(M+H)⁺] 361.1194, Found 361.1193.

3-acetyl-4-(4-nitrophenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4k)

White solid (78% yield); mp 121-123 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.8 Hz, 2H), 7.26 (d, J = 8.7 Hz, 2H), 4.81 (s, J = 1.2 Hz, 1H), 3.41 (s, 3H), 2.66 (s, 3H), 2.59 (d, J = 1.3 Hz, 3H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 169.9, 166.3, 163.9, 149.9, 147.9, 142.8, 129.3, 123.8, 114.2, 87.7, 60.8, 29.7, 29.5, 28.5, 15.3; IR (KBr, cm⁻¹): 3150, 3075, 2957, 2926, 1698, 1373, 1350, 1289, 1183, 816, 637; HR-MS (ESI) calcd for C₁₈H₁₈N₃O₇⁺ [(M+H)⁺] 388.1139, Found 388.1140.

3-acetyl-4-(4-methoxyphenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4l)

White solid (57% yield); mp 140-142 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, J = 7.8 Hz, 2H), 6.83 (d, J = 7.8 Hz, 2H), 4.68 (d, J = 1.3 Hz, 1H), 3.78 (s, 3H), 3.40 (s, 3H), 2.64 (s, 3H), 2.53 (d, J = 1.5 Hz, 3H), 1.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.2, 169.6, 166.9, 164.4, 160.0, 150.2, 129.5, 127.2, 114.3, 113.0, 88.6, 61.5, 55.3, 29. 6, 29.3, 28.4, 14.9; IR (KBr, cm⁻¹): 3020, 2957, 2925, 1690, 1610, 1443, 1376, 1246, 1128, 1043, 755; HR-MS (ESI) calcd for C₁₉H₂₁N₂O₆⁺ [(M+H)⁺] 373.1394, Found 373.1395.

3-acetyl-4-(4-methylphenyl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4m)

White solid (89% yield); mp 192-194 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, J = 7.8 Hz, 2H), 6.93 (d, J = 7.4 Hz, 2H), 4.69 (d, J = 1.2 Hz, 1H), 3.40 (s, 3H), 2.59 (s, 3H), 2.54 (d, J = 1.4 Hz, 3H), 2.32 (s, 3H), 1.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.3, 169.7, 166.9, 164.4, 150.2, 139.0, 132.2, 129.6, 128.2, 112.9, 88.6, 61.9, 29.6, 29.4, 28.3, 21.1, 14.9; IR (KBr, cm⁻¹): 3020, 2960, 2924, 2314, 1691, 1611, 1444, 1376, 1241, 1128, 1047, 948, 755; HR-MS (ESI) calcd for C₁₉H₂₁N₂O₅⁺ [(M+H)⁺] 357.1445, Found 357.1444.

3-acetyl-4-(naphthalen-1-yl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4n)

White solid (86% yield); mp 219-221 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.72 (m, 3H), 7.54 (s, 1H), 7.53 – 7.45 (m, 2H), 7.15 (s, 1H), 4.89 (d, *J* = 1.2 Hz, 1H), 3.44 (s, 3H), 2.60 (d, *J* = 1.3 Hz, 3H), 2.37 (s, 3H), 1.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.2, 170.0, 166.9, 164.3, 150.1, 133.3, 133.0, 132.7, 128.8, 128.0, 127.8, 127.7, 126.9, 126.9, 125.5, 113.0, 88.6, 62.2, 29.7, 29.4, 28.3, 15.0; IR (KBr, cm⁻¹): 3019, 2958, 2924, 2387, 1691, 1629, 1439, 1376, 1232, 1125, 1046, 950, 753, 487; HR-MS (ESI) calcd for C₂₂H₂₁N₂O₅⁺ [(M+H)⁺] 393.1445, Found 393.1447

3-acetyl-4-(furan-2-yl)-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (40)

White solid (85% yield); mp 162-164 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, J = 1.8, 0.7 Hz, 1H), 6.34 (dd, J = 3.2, 1.9 Hz, 1H), 6.17 (d, J = 3.3 Hz, 1H), 4.86 (d, J = 1.5 Hz, 1H), 3.39 (s, 3H), 2.92 (s, 3H), 2.50 (d, J = 1.5 Hz, 3H), 2.04 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.6, 170.0, 166.4, 163.9, 150.2, 149.1, 143.2, 111.2, 110.9, 110.2, 87.0, 55.0, 29.4, 29.2, 28.9, 15.0; IR (KBr, cm⁻¹): 3022, 2958, 2925, 2386, 1694, 1634, 1440, 1378, 1237, 1130, 1047, 948, 752; HR-MS (ESI) calcd for C₁₆H₁₇N₂O₆⁺ [(M+H)⁺] 333.1081, Found 333.1080.

3-acetyl-4-isopropyl-2,7,9-trimethyl-1-ox-7,9-diazaspiro[4,5]-2-decene-6,8,10-trione (4p)

White solid (63% yield); mp 182-184 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.41 (s, 1H), 3.35 (s, 3H), 3.29 (s, 3H), 2.43 (s, 3H), 2.34 (d, *J* = 1.8 Hz, 3H), 1.85 (m, 1H), 0.95 (d, *J* = 6.5 Hz, 3H), 0.83 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.0, 167.5, 166.9, 165.1, 150.4, 115.3, 89.0, 60.2, 30.5, 29.6, 29.5, 29.2, 21.6, 18.7, 15.3; IR(KBr, cm⁻¹): 2967, 2930, 2359, 1697, 1629, 1446, 1375, 1217, 1088, 1034, 951, 749; HR-MS (ESI) calcd for C₁₅H₂₁N₂O₅⁺ [(M+H)⁺] 309.1445, Found 309.1447

6. References

1) H. Liu, Y. Liu, C. Yuan, G.-P. Wang, S.-F. Zhu, Y. Wu, B. Wang, Z. Sun, Y. Xiao, Q.-L. Zhou, and

H. Guo, Org. Lett., 2016, **18**, 1302. 2) M. Szoctak, B. Sautier, M. Spain, M. Behlendorf, and J.

2) M. Szostak, B. Sautier, M. Spain, M. Behlendorf, and D. J. Procter, *Angew. Chem. Int. Ed.* 2013, 52, 12559.

7. The Single Crystal X-ray Diffraction Study of 3h

Table S1 Crystal data and structure refinement for 3h

Identification code	201811442
Empirical formula	$C_{18}H_{17}ClN_2O_5$
Formula weight	376.78
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	9.7345(3)
b/Å	14.0642(4)
c/Å	13.0475(4)
$\alpha/^{\circ}$	90
β/°	91.839(3)
γ/°	90

Volume/Å ³	1785.39(10)
Z	4
$\rho_{calc}g/cm^3$	1.402
μ/mm^{-1}	2.181
F(000)	784.0
Crystal size/mm ³	$0.19 \times 0.14 \times 0.1$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	9.248 to 134.13
Index ranges	$-11 \le h \le 7, -16 \le k \le 16, -15 \le l \le 15$
Reflections collected	12681
Independent reflections	$3190 [R_{int} = 0.0334, R_{sigma} = 0.0271]$
Data/restraints/parameters	3190/0/240
Goodness-of-fit on F2	1.026
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0484, wR_2 = 0.1375$
Final R indexes [all data]	$R_1 = 0.0587, wR_2 = 0.1493$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.43

8. Copies of ¹H and ¹³C NMR Spectra for the Products

¹H NMR of compound **3b**

¹H NMR of compound 3c

¹H NMR of compound **3d**

 1 H NMR of compound **3**g

¹H NMR of compound **3i**

¹H NMR of compound **3**j

¹H NMR of compound **3**k

 1 H NMR of compound **3m**

¹H NMR of compound **3n**

¹H NMR of compound **4a**

 1 H NMR of compound **4b**

¹H NMR of compound **4d**

¹H NMR of compound **4e**

¹H NMR of compound **4**f

 1 H NMR of compound **4**g

¹H NMR of compound **4h**

¹H NMR of compound **4i**

¹H NMR of compound **4**j

¹H NMR of compound **4**

 1 H NMR of compound **4m**

¹H NMR of compound **40**

¹H NMR of compound **4p**

¹³C NMR of compound **4p**