Supporting Information

Synthesis of α-Arylthioacetones using TEMPO as C₃ Synthons via a Reaction Cascade of Sequential Oxidization, Skeletal Rearrangement and C-S Bond Formation

Jiao-Xia Zou,^{a,†} Yi Jiang,^{a,†} Shuai Lei,^a Gao-Feng Yin,^a Xiao-Ling Hu,^a Quan-Yi Zhao,^{a,*} Zhen Wang^{a,b*}

^aSchool of Pharmacy, Lanzhou University, West Donggang Road. No. 199, Lanzhou 730000, China.

^bState Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

[†]These authors contributed equally to this work.

Table of contents

General Information
Experimental Section
Preparation of Nitroxyl radicals
Optimization of reaction conditions4
Investigation of substrate scopes
General procedure for the C_3 -synthon form TEMPO coupling with thiols: 5
General procedure for gram scale experiment:
General procedure for 1 mmol scale experiments:
General procedure for the C_3 -synthon form nitroxyl radicals coupling with
thiophenol 1a :
Characterization data for products7
Mechanism study
References
¹ H NMR and ¹³ C NMR spectrum

General Information

All reactions were carried out in a dry solvent under argon atmosphere unless otherwise noted. NMR spectra were recorded on Bruker 400 MHz or 600 MHz (400 MHz or 600 MHz for ¹H-NMR and 100 MHz for ¹³C-NMR) spectrometers. Proton chemical shifts are reported relative to a residual solvent peak (CDCl₃ at 7.26 ppm). Carbon chemical shifts are reported relative to a residual solvent peak (CDCl₃ at 77.16 ppm). The following abbreviations were used to designate multiplicities: s =singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br = broad. Fourier transform infrared spectra (FT-IR) were recorded on an Agilent Cary 630 FT-IR instrument. High-resolution mass spectra (HRMS) were measured on a Brucker Daltonics Apex II 47e Specification (for HRMS). GC-MS spectra were recorded on an Agilent Technologies 7890B GC-system with an Agilent 5973C VL MSD and a HP-5MS column (0.25mm x 30 m, film: 0.25 µm). The major signals are quoted in m/z with the relative intensity in parentheses. The employed a method that starts with the injection temperature T0 (50 °C); after holding this temperature for 2 min, the column is heated by 40 °C/min to temperature T1 (200 °C) and this temperature is held for an additional time t (18 min).

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Substrates **1a-1o**, **2a**, **2b**, **2c** are commercially available. Nitroxyl radicals **2d-2i** were prepared according to the literature's procedures.

Experimental Section

Preparation of Nitroxyl radicals

Nitroxyl radicals $2d-2e^1$, $2f-2h^2$, were prepared according to the the literature. Nitroxyl radicals 2i also were prepared according to the literature,³ to a vigorously stirred solution of 170.2 mg (1 mmol) of 4-oxy-2,2,6,6-tetramethylpiperidinyl-1-oxy in 10 mL of anhydrous THF was added dropwise 1.33 mL (2 mmol) PhLi at -78 °C under argon. The reaction mixture was stirred at -78 °C about 4h, then quenched with saturated NH₄Cl. The resulting mixture was washed with water three times and separated, and the organic layer was dried with anhydrous magnesium sulfate. The organic solution was concentrated in vacuo to give a red liquid. Finally, the residue was purified by column chromatography on silica gel (hexane / EtOAc =5:1) to afford the desired product 2i as orange solid in 50 % yield.

2d: IR (KBr, v / cm⁻¹) 2973, 2939, 1463, 1377, 1243, 1180, 1101, 880; GC-MS (EI) m/z (%): 228.2 (21) (M⁺), 214.2 (10), 172.2 (45), 142.2 (31), 127.2 (100), 116.1 (19), 98.1 (14), 85.1 (38), 71.1 (88), 57.1 (39); HRMS (ESI) Calcd for $C_{13}H_{26}NNaO_2^+$ (M+Na⁺) 251.1856, Found 251.1852.

2e: IR (KBr, v / cm⁻¹) 2984, 2941, 1465, 1374, 1359, 1247, 1191, 1178, 1094, 1031, 911, 747, 702, 688; GC-MS (EI) m/z (%): 262.2 (8) (M⁺), 248.2 (3), 132.1 (6), 122.1 (17), 91.1 (100), 85.1 (13), 57.1 (11); HRMS (ESI) Calcd for $C_{16}H_{24}NNaO_2^+$ (M+Na⁺) 285.1699, Found 285.1693.

2f: IR (KBr, v / cm⁻¹) 2980, 2941, 1743, 1465, 1366, 1239, 1180, 1033, 736; GC-MS (EI) m/z (%): 214.2 (16) (M⁺), 154.2 (9), 140.1 (29), 124.2 (50), 109.1 (100), 81.1 (19), 67.1 (25), 55.1 (17); HRMS (ESI) Calcd for $C_{11}H_{20}NNaO_3^+$ (M+Na⁺) 237.1335, Found 237.1336.

2g: IR (KBr, v / cm⁻¹) 2976, 2939, 1724, 1465, 1366, 1286, 1163, 738; GC-MS (EI) m/z (%): 256.2 (11) (M⁺), 154.2 (10), 140.1 (98), 124.2 (68), 109.1 (100), 98.1 (15), 82.1 (20), 69.1 (23), 57.1 (92); HRMS (ESI) Calcd for $C_{14}H_{26}NNaO_3^+$ (M+Na⁺) 279.1805, Found 279.1810.

2h: IR (KBr, v / cm⁻¹) 2980, 2941, 1716, 1465, 1364, 1280, 1180, 1118, 740, 716, 688; GC-MS (EI) m/z (%): 276.2 (6) (M⁺), 262.2 (6), 154.2 (10), 140.1 (79), 124.2 (47), 109.1 (64), 105.1 (100), 98.1 (11), 77.1 (53), 67.1 (12), 51.1 (10); HRMS (ESI) Calcd for $C_{16}H_{22}NNaO_3^+$ (M+Na⁺) 299.1492, Found 299.1506.

2i: IR (KBr, v / cm⁻¹) 3429, 2974, 2932, 1446, 1362, 1243, 1224, 1185, 1057, 760, 701; GC-MS (EI) m/z (%): 248.2 (17) (M⁺), 192.1 (11), 162.1 (42), 147.1 (100), 128.1 (10), 120.1 (21), 105.1 (80), 91.1 (12), 77.1 (36), 69.1 (14), 56.1 (11); HRMS (ESI) Calcd for $C_{15}H_{22}NNaO_2^+$ (M+Na⁺) 271.1543, Found 271.1550.

Optimization of reaction conditions

A test tube equipped with a magnetic stir bar was charged with thiophenol **1a** (0.20 mmol, 1.0 equiv), 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) **2a** (0.40-0.50 mmol, 2.0-2.5 equiv), base (0-0.60 mmol, 0-3.0 equiv) and solvent (1.0-2.0 mL) under argon atmosphere. The resulting mixture was stirred for 3 min at room temperature, and then heated at indicated temperature for 1-24 h. The reaction solution was cooled to ambient temperature, quenched by 15 mL water and extracted with ethyl acetate (3*10mL). The combined organic extracts were dried with anhydrous magnesium sulfate, then concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (hexane / EtOAc= 15:1) to give **3a** as yellow oil.

	<u></u>	$\langle \rangle$			0
	SH -		base		s
	1a	↓ 2a	solvent, temp., time		3a
Entry	Base	Slovent	Temperature / °C	Time	Yield ^b /%
1	K_2CO_3	DMSO	150	12 h	70
2	K ₂ CO ₃	DMF	150	12 h	66
3	K ₂ CO ₃	DMA	150	12 h	82
4	K ₂ CO ₃	NMP	150	12 h	76
5	K_2CO_3	CH ₃ CN	150	12 h	20
6	K ₂ CO ₃	<i>n</i> -PrCN	150	12 h	trace
7	K ₂ CO ₃	toluene	150	12 h	N.R.
8	K ₂ CO ₃	dioxane	150	12 h	N.R.
9	K_2CO_3	MeOH	150	12 h	N.R.
10	K ₂ CO ₃	THF	150	12 h	trace

Table S1. Investigation of solvents for reaction

^aReaction conditions: **1a** (0.20 mmol, 1.0 equiv), **2a** (0.40 mmol, 2.0 equiv), base (0.40 mmol, 2.0 equiv), solvent (1.0 mL) at 150 °C for 12 h under argon atmosphere. ^bIsolated yields (the yield was calculated based on half of the sulfur source converted into products). *n*-PrCN = Butanenitrile. N.R. = no results.

0

c

^ SH	\frown	
SIT		base
	· _ `N	DMA, 150 °C, 12h

Table S2.	Investigation	of bases f	for reaction	
		~		

	<u> </u>	5400		\checkmark
la 1a	0 ⊂ 10 C	000 000 000 000 000 000 000 000 000 00	C, 12h	3a
Base (2.0 equiv)	Yield ^b /%	Entry	K_2CO_3 (x equiv)	Yield ^{b/%}
K_2CO_3	82	10	0	N.R.
Cs_2CO_3	76	11	0.5 equiv	30
$K_3PO_4 \bullet 3H_2O$	80	12	1.0 equiv	54
AcOK	N.R.	13	1.5 equiv	72
KOt-Bu	trace	14	2.0 equiv	82
	H_{a} H_{a	+N $-$ 1a \bigcirc 2aBase (2.0 equiv)Yield b/%K_2CO_382Cs_2CO_376K_3PO_4•3H_2O80AcOKN.R.KOt-Butrace	+ N $ -$	h h

6	NaOH	trace	15	3.0 equiv	80
7	DBU	trace	-	-	-
8	Pydine	trace	-	-	-
9	Et ₃ N	trace	-	-	-

^aReaction conditions: **1a** (0.20 mmol, 1.0 equiv), **2a** (0.40 mmol, 2.0 equiv), base (0-0.60 mmol, 0-3.0 equiv), DMA (1.0 mL) at 150 °C for 12 h under argon atmosphere. ^bIsolated yields (the yield was calculated based on half of the sulfur source converted into products). N.R. = no results.

Table S3. Investigation of other factors (the amount of TEMPO, temperature, reaction time etc.) for reaction

	SH + 1a	→ <u></u>	K ₂ CO ₃ //A, temp., 12h		o L a
Entry	Changed parameters	Yield ^{b/0} ⁄0	Entry	Changed parameters	Yield ^b /%
1	1.0 eq. TEMPO	trace	12	1h	30
2	1.5 eq. TEMPO	28	13	2h	48
3	2.5 eq. TEMPO	68	14	4 h	56
4	3.0 eq. TEMPO	60	15	7 h	70
5	4.0 eq. TEMPO	46	16	10 h	72
6	130 °C	64	17	24 h	60
7	110 °C	56	18	DMA 0.6mL	80
8	90 °C	52	19	DMA 2mL	68
9	70 °C	24	20	Air	42
10	50 °C	trace	21	O_2	N.R.
11	30 °C	trace	-	-	-

^aReaction conditions: **1a** (0.20 mmol, 1.0 equiv), **2a** (x mmol, x equiv), base (0.40mmol, 0.20 equiv), DMA (x mL) at 30-130 °C for 1-24 h under argon atmosphere. ^bIsolated yields (the yield was calculated based on half of the sulfur source converted into products). N.R. = no results.

Investigation of substrate scopes

General procedure for the C_3 -synthon form TEMPO coupling with thiols:

A test tube equipped with a magnetic stir bar was charged with thiols 1 (0.20 mmol, 1.0 equiv), 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) **2a** (0.40-0.50 mmol, 2.0-2.5 equiv), K_2CO_3 (0.40 mmol, 2.0 equiv) and DMA (1.0 mL) under argon atmosphere. The resulting mixture was stirred for 3 min at room temperature, and then heated at 150 °C for 12 h. The reaction solution was cooled to ambient

temperature, quenched by 15 mL water and extracted with ethyl acetate (3*10mL). The combined organic extracts were dried with anhydrous magnesium sulfate, then concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (hexane / EtOAc= 5:1 to 30:1) to give **3** as yellow oil.

General procedure for gram scale experiment:

A round-bottom flask equipped with a magnetic stir bar was charged with thiophenol **1a** 1.10 g (10 mmol, 1.0 equiv), 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) **2a** 3.13 g (20 mmol, 2.0 equiv), K_2CO_3 2.76 g (20 mmol, 2.0 equiv) and DMA (30 mL) under argon atmosphere. The resulting mixture was stirred for 3 min at room temperature, and then heated at 150 °C for 12 h. The reaction solution was cooled to ambient temperature, quenched by 150 mL water and extracted with ethyl acetate (3*100 mL). The combined organic extracts were dried with anhydrous magnesium sulfate, then concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (hexane / EtOAc= 30:1) to give **3a** (0.574 g) in 69% yield as yellow oil.

General procedure for 1 mmol scale experiments:

A test tube equipped with a magnetic stir bar was charged with 4-(tertbutyl)benzenethiol **1g** 0.166 g (1.0 mmol, 1.0 equiv) or 2-chlorobenzenethiol **1j** 0.144 g (1.0 mmol, 1.0 equiv), 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) **2a** 0.313 g or 0.391 g (2.0-2.5 mmol, 2.0-2.5 equiv), K_2CO_3 0.276 g (2.0 mmol, 2.0 equiv) and DMA (3.0 mL) under argon atmosphere. The resulting mixture was stirred for 3 min at room temperature, and then heated at 150 °C for 12 h. The reaction solution was cooled to ambient temperature, quenched by 30 mL water and extracted with ethyl acetate (3*20mL). The combined organic extracts were dried with anhydrous magnesium sulfate, then concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (hexane / EtOAc= 5:1 to 40:1) to give **3g** in 74% yield (82.3 mg) and **3j** in 43% yield (43.2 mg), both as yellow oil.

General procedure for the C_3 -synthon form nitroxyl radicals coupling with thiophenol **1a**:

A test tube equipped with a magnetic stir bar was charged with thiophenol 1a (0.20

mmol, 1.0 equiv), nitroxyl radicals **2a** (0.40 mmol, 2.0 equiv), K_2CO_3 (0.40 mmol, 2.0 equiv) and DMA (1.0 mL) under argon atmosphere. The resulting mixture was stirred for 3 min at room temperature, and then heated at 150 °C for 12 h. The reaction solution was cooled to ambient temperature, quenched by 15 mL water and extracted with ethyl acetate (3*10mL). The combined organic extracts were dried with anhydrous magnesium sulfate, then concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (hexane / EtOAc= 15:1) to give **3a** as yellow oil.

Characterization data for products

1-(phenylthio)propan-2-one (3a)

13.6 mg, 82 %, yellow oil; ¹H-NMR (400 MHz, CDCl₃) δ 7.36 – O 7.24 (m, 4H), 7.24 – 7.18 (m, 1H), 3.66 (s, 2H), 2.27 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 203.6, 134.8, 129.6, 129.3, 127.0, 44.8, 28.1; IR (KBr, v / cm⁻¹) 1709, 1584, 1482, 1441, 1357, 1232, 1150, 742, 691; GC-MS (EI) m/z (%): 166.1 (60) (M⁺), 123.1 (100), 109.1 (19), 91.1 (6), 77.1 (22), 65.1 (15), 51.1 (20); HRMS (ESI) Calcd for C₉H₁₀NaOS⁺ (M+Na⁺) 189.0345, Found 189.0350.

1-((4-fluorophenyl)thio)propan-2-one (**3b**)

7.7 mg, 42 %, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.00 (dd, J = 12.0, 5.3 Hz, 2H), 3.60 (s, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.3, 163.7, 161.2, 3b 133.0 (d, J = 8.2 Hz), 129.5 (d, J = 3.4 Hz), 116.6, 116.4, 45.9, 28.2; IR (KBr, v / cm⁻¹) 1709, 1589, 1493, 1398, 1359, 1228, 1157, 1092, 1012, 829; GC-MS (EI) m/z (%): 184.1 (68) (M⁺), 141.1 (100), 127.0 (24), 95.1 (9), 83.1 (30), 75.1 (15); HRMS (ESI) Calcd for C₉H₉FNaOS⁺ (M+Na⁺) 207.0250, Found 207.0259. 1-((4-chlorophenyl)thio)propan-2-one (3c) 10.0 mg, 50 %, yellow oil; ¹H-NMR (600 MHz, CDCl₃) δ 7.29 -7.25 (m, 4H), 3.64 (s, 2H), 2.27 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) & 203.2, 133.3, 131.2, 129.5, 44.9, 28.2; IR (KBr, v / 3c CI cm⁻¹) 1771, 1478, 1385, 1247, 1096, 1059, 915, 744; GC-MS (EI) m/z (%): 200.0 (65) (M⁺), 157.0 (100), 143.0 (14), 121.0 (12), 108.0 (23), 75.1

(16); HRMS (ESI) Calcd for C₉H₉ClNaOS⁺ (M+Na⁺) 222.9955, Found 222.9963.

1-((4-bromophenyl)thio)propan-2-one (**3d**) 11.2 mg, 56 %, yellow oil; ¹H-NMR (600 MHz, CDCl₃) δ 7.41 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.3 Hz, 2H), 3.65 (s, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.1, 134.0, 132.4, 131.2, 121.1, 44.7, 28.1; IR (KBr, v / cm⁻¹) 1705, 1476, 1387, Br **3d** 1116, 1096, 1008, 911, 811, 732; GC-MS (EI) m/z (%): 247.0 (6) (M+3⁺), 246.0 (52) $(M+2^+)$, 245.1 (6) $(M+1^+)$, 244.0 (51) (M^+) , 204.0 (21) $(M+3-43^+)$, 203.0 (62) $(M+2-43^+)$, 202.0 (21) $(M+1-43^+)$, 201.0 (61) $(M-43^+)$, 122.1 (100), 108.0 (33); HRMS (ESI) Calcd for C₉H₉BrNaOS⁺ $(M+Na^+)$ 266.9450, Found 266.9453.

1-(p-tolylthio)propan-2-one (3e)

8.6 mg, 48 %, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.10 (d, J = 8.0 Hz, 2H), 3.61 (s, 2H), 2.31 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.8, 137.4, 130.9, 130.6, 130.1, 45.5, 28.1, 21.2; IR (KBr, v / cm⁻¹) 1711,

1495, 1357, 1232, 1150, 1092, 913, 807, 744; GC-MS (EI) m/z (%): 180.1 (65) (M⁺), 137.1 (100), 123.1 (11), 91.1 (28), 77.1 (15), 65.1 (13); HRMS (ESI) Calcd for $C_{10}H_{12}NaOS^+$ (M+Na⁺) 203.0501, Found 203.0502.

1-((4-methoxyphenyl)thio)propan-2-one (3f)

13.7 mg, 70%, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 3.55 (s, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.7, 159.7, 133.8, 124.7, 115.0, 55.5, 46.7, 28.2; IR (KBr, v

/ cm⁻¹) 1709, 1593, 1497, 1357, 1288, 1247, 1180, 1031, 828, 747; GC-MS (EI) m/z (%): 196.1 (99) (M⁺), 153.1 (100), 138.0 (42), 109.1 (42), 96.0 (13), 77.1 (12); HRMS (ESI) Calcd for $C_{10}H_{12}NaO_2S^+$ (M+Na⁺) 219.0450, Found 219.0452.

1-((4-(tert-butyl)phenyl)thio)propan-2-one (3g)

18.2 mg, 82 %, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (q, J = 8.6 Hz, 4H), 3.63 (s, 2H), 2.28 (s, 3H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 203.9, 150.5, 131.1, 130.0, 126.4, 45.3, 34.7, 31.4, 28.1; IR (KBr, v / cm⁻¹) 1711, ^{t-B}

t-Bu 3g

1491, 1398, 1357, 1269, 1232, 1120, 1012, 822; GC-MS (EI) m/z (%): 222.2 (75) (M⁺), 207.1 (100), 179.1 (29), 149.1 (23), 135.1 (11), 123.1 (54), 115.1 (17), 91.1 (20), 57.1 (47); HRMS (ESI) Calcd for $C_{13}H_{18}NaOS^+$ (M+Na⁺) 245.0971, Found 245.0976.

1-((3-bromophenyl)thio)propan-2-one (**3h**)

12.2 mg, 50 %, yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.47 (t, J = 1.8 Hz, 1H), 7.35 – 7.32 (m, 1H), 7.24 (dd, J = 7.1, 0.8 Hz, 1H), 7.15 (t, J = 7.9 Hz, 1H), 3.69 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.9, 137.3, 131.8, 130.6, 129.9,

Br S S

127.7, 123.1, 44.4, 28.2; IR (KBr, v / cm⁻¹) 1711, 1558, 1577, 1461, 1396, 1357, 1232, 1152, 773, 753, 677; GC-MS (EI) m/z (%): 247.0 (5) (M+3⁺), 246.0 (48) (M+2⁺), 245.1 (6) (M+1⁺), 244.0 (47) (M⁺), 204.0 (28) (M+3-43⁺), 203.0 (52) (M+2-43⁺), 202.0 (28) (M+1-43⁺), 201.0 (50) (M-43⁺), 122.1 (100), 108.0 (35); HRMS (ESI) Calcd for C₉H₉BrNaOS⁺ (M+Na⁺) 266.9450, Found 266.9456.

1-(m-tolylthio)propan-2-one (3i)

13.3 mg, 74 %, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.16 (dd, J = 9.3, 7.3 Hz, 3H), 7.03 (s, 1H), 3.66 (s, 2H), 2.32 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.8, 139.2, 134.5, 130.3, 129.2, 127.9, 126.6, 44.8, 28.1, 21.5; IR (KBr, v /

cm⁻¹) 1771, 1709, 1593, 1476, 1357, 1241, 1059, 913, 744, 690; GC-MS (EI) m/z (%): 180.1 (67) (M⁺), 137.1 (100), 123.1 (7), 91.1 (24), 77.1 (13), 65.1 (12); HRMS (ESI) Calcd for $C_{10}H_{12}NaOS^+$ (M+Na⁺) 203.0501, Found 203.0503.

1-((2-chlorophenyl)thio)propan-2-one (3j)

11.6 mg, 58 %, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.8 Hz, 1H), 7.32 – 7.25 (m, 1H), 7.22 (dd, J = 10.6, 4.5 Hz, 1H), 7.16 (dd, J = 10.6, 4.5 Hz, 1H), 3.71 (s, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.3, 134.1, 130.1, 129.6, 127.7 (d, J = 18.5 Hz), 43.5, 28.2; IR (KBr, v / cm⁻¹) 1713, 1454, 1433, 1357, 1232,1150, 1116, 1034, 913, 747; GC-MS (EI) m/z (%): 200.1 (62) (M⁺), 157.0 (100), 143.0 (12), 121.1 (18), 108.0 (33), 75.1 (17); HRMS (ESI) Calcd for C₉H₉ClNaOS⁺ (M+Na⁺) 222.9955, Found 222.9960.

1-(o-tolylthio)propan-2-one (**3k**)

11.2 mg, 62 %, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, J = 6.8, 4.8 Hz, 1H), 7.20 – 7.16 (m, 1H), 7.13 (dt, J = 9.0, 5.9 Hz, 2H), 3.65 (s, 2H), 2.40 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.7, 138.0, 134.0, 130.5, 128.9, 126.9, 44.0, 28.2, 20.4; H (*K*Pr w (ampl) 1712, 1500, 1470, 1257, 1280, 1222, 1150, 1068, 104

IR (KBr, v / cm⁻¹) 1713, 1590, 1470, 1357, 1280, 1232, 1150, 1068, 1049, 747; GC-MS (EI) m/z (%): 180.1 (71) (M⁺), 137.1 (100), 121.1 (16), 91.1 (30), 77.1 (16), 65.1 (15); HRMS (ESI) Calcd for $C_{10}H_{12}NaOS^+$ (M+Na⁺) 203.0501, Found 203.0502.

Methyl 2-((2-oxopropyl)thio)benzoate (31)

8.5 mg, 38 %, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 1H), 7.45 (d, J = 7.3 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 3.94 (s, 3H), 3.71 (s, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.5, 166.9, 140.1, 133.0, 131.7, 127.6, 125.9, 124.9, 52.4, 43.4, 28.1; IR (KBr, v / cm⁻¹) 1711, 1465,

1435, 1277, 1254, 1144, 1064, 749; GC-MS (EI) m/z (%): 224.1 (57) (M⁺), 193 (21), 181 (77), 167 (15), 150 (100), 136 (14), 121 (33), 108 (23); HRMS (ESI) Calcd for $C_{11}H_{12}NaO_3S^+$ (M+Na⁺) 247.0399, Found 247.0401.

1-((2,6-dimethylphenyl)thio)propan-2-one (3m)

5.4 mg, 28 %, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.06 (m, 3H), 3.41 (s, 2H), 2.53 (s, 6H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.3, 143.2, 132.0, 129.0, 128.5, 45.2, 28.7, 22.0; IR (KBr, v / cm⁻¹) 1711, 1461, 1355, 1236, 1148, 915, 773, 747; GC-MS (EI) m/z (%): 194.1 (86) (M⁺), 157.1 (100), 135.1 (26), 121.0 (8), 105.1 (39), 91.1 (24), 77.1 (24), 65.1 (7); HRMS (ESI) Calcd for C₁₁H₁₄NaOS⁺ (M+Na⁺)

217.0658, Found 217.0656.

1-(pyridin-2-ylthio)propan-2-one (**3n**)

5.0 mg, 30 %, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 4.4 Hz, 1H), 7.54 – 7.44 (m, 1H), 7.23 (d, J = 8.1 Hz, 1H), 6.99 (dd, J = 6.6, 5.3 Hz, 1H), 3.99 (s, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.0, 157.0, 149.5, 136.2, 122.2, 112.0, 40.3, 28.8;

IR (KBr, v / cm⁻¹) 1715, 1558, 1582, 1456, 1418, 1357, 1152, 1126, 913, 760, 732; GC-MS (EI) m/z (%): 167.1 (11) (M⁺), 124.1 (100), 78.1 (40), 51.1 (13); HRMS (ESI) Calcd for $C_8H_{10}NOS^+$ (M+H⁺) 168.0478, Found 168.0485.

1-(benzo[d]thiazol-2-ylthio)propan-2-one (**3o**)

7.6 mg, 34 %, yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 4.23 (s, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.9, 165.0, 152.9, 135.7, 126.2, 124.6, 121.7, 121.3, 43.2, 29.0; IR (KBr, v / cm⁻¹) 1716, 1461,

1429, 1357, 1277, 1239, 1154, 1079, 1021, 999, 759, 727; GC-MS (EI) m/z (%): 223.1 (35) (M⁺), 181.0 (100), 148.0 (55), 136.0 (31), 122.0 (11), 108.0 (23); HRMS (ESI) Calcd for $C_{10}H_9NNaOS_2^+$ (M+Na⁺) 246.0018, Found 246.0019.

Mechanism study

Firstly, we collected reaction samples at series of reaction time points (30 min, 1 h, 2 h, 3 h, 5 h) and analyzed every point in TLC by NMR or MS (HRMS, GC-MS and LC-MS).

1aa: ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 5.2, 3.3 Hz, 2H), 7.33 – 7.26 (m, 2H), 7.26 – 7.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 129.2, 127.7, 127.3; GC-MS (EI) m/z: 218.0 (100) (M⁺), 185.1 (21), 154.1 (21), 140.0 (5), 109.1(86). Data consistent with authentic sample.

1ab: LC-MS (ESI) t_R=11.937: 235.0 (M+H⁺), 257.0 (M+Na⁺).

1ac: ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.53 (m, 3H), 7.47 (ddd, *J* = 6.9, 4.3, 2.0 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.38 – 7.29 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 136.7, 133.8, 131.6, 129.6, 128.9, 128.0, 127.7.

4: ¹H NMR (400 MHz, CDCl₃) δ 1.58 – 1.49 (m, 2H), 1.24 – 1.17 (m, 4H), 1.01 (s, 12H); GC-MS (EI) m/z: 141.2 (2) (M⁺), 126.1 (100), 109.1 (16), 98.1 (7); HRMS (ESI) Calcd for C₉H₂₀N⁺ (M+H⁺) 142.1590, Found 142.1592. Data consistent with authentic sample.

5 (unstable in air): ¹H NMR (400 MHz, CDCl₃) δ 4.45 (s, 1H), 1.91 – 1.43 (m, 6H), 1.41 – 0.92 (m, 12H); GC-MS (EI) m/z: 157.1 (6) (M⁺), 142.1 (100), 126.1 (8), 109.1 (18), 96.1 (9). HRMS (ESI) Calcd for C₉H₂₀NO⁺ (M+H⁺) 158.1539, Found 158.1538. Data consistent with literature values.⁴

6: ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.3 Hz, 2H), 7.47 – 7.36 (m, 3H), 1.67 (s, 6H), 1.54 (d, J = 24.4 Hz, 10H), 0.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 129.4, 128.6, 126.1, 61.4, 59.0, 43.6, 41.5, 35.5, 32.7, 28.9, 28.1, 17.4. IR (KBr, v / cm⁻¹) 2973, 2932, 1771, 1243, 1085, 1059, 751, 699; GC-MS (EI) m/z (broken into two parts): 125.2 (58) (PhSO⁺), 110.1 (39), 97.1 (100); 140.1 (92) (C₉H₁₈N⁺), 125.1 (100), 109.1 (9), 97.1 (67); HRMS (ESI) Calcd for C₁₅H₂₃NONaOS⁺ (M+Na⁺) 288.1393, Found 288.1391.

7: ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.74 (m, 2H), 7.38 (t, *J* = 6.2 Hz, 3H), 1.59 (s, 6H), 1.51 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 131.4, 128.7, 126.2, 61.0, 44.0, 31.2, 16.9; IR (KBr, v / cm⁻¹) 2997, 1771, 1374, 1243, 1059, 915, 744; GC-MS (EI) m/z: 266.1 (61) (M-15⁺), 198.1 (29), 158.0 (3), 141.0 (31), 124.1 (5), 109.1 (100); HRMS (ESI) Calcd for C₁₅H₂₃NNaO₂S⁺ (M+Na⁺) 304.1342, Found 304.1337.

Based on above results of compounds and literature reports,⁵ next, we examined the possibility of every compound as an intermediate.

a) Reaction in eq. 1-3

According to literature reports, compounds 1ab and 1ac were prepared. Next, **1aa**, **1ab** and **1ac** respectively reacted with TEMPO under standard condition, yielding the desired product **3a** in 33 %, 37 %, 32 %, respectively.

b) Reaction in eq. 4-7

We used compounds 4-7 to react with 1a, 1aa, 1ab and 1ac under standard condition, respectively. As showed in eq. 4-7, compounds 4, 5, 6, 7as intermediates in this reaction process could be ruled out.

c) Reaction in eq. 8-10

According to literature reports, 2,2,6,6-tetarmethylpiperidine could support C_3 synthon via C-C bond cleavage through two possible pathways (eq. 8 and eq. 9). A test tube equipped with a magnetic stir bar was charged with thiophenols **1a** (0.20 mmol, 1.0 equiv), 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) **2a** (0.40 mmol, 2.0 equiv), K₂CO₃ (0.40 mmol, 2.0 equiv) and DMA (1.0 mL) under argon atmosphere. The resulting mixture was stirred for 3 min at room temperature, and then heated at 150 °C for 12 h. The reaction solution was cooled to 0 °C, then, dropwise adding 114 uL di-tert-butyl dicarbonate (Boc)₂O (0.40 mmol, 2.0 equiv) or 76.3 mg 4-toluene sulfonyl chloride TsCl (0.40 mmol, 2.0 equiv) in 1.0 mL MeOH at 0 °C and stirred for 5 h at room temperature. The reaction solution was quenched by 15 mL water and extracted with ethyl acetate (3*10mL). The combined organic extracts were dried with anhydrous magnesium sulfate, then concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (hexane / EtOAc= 30:1) to give **4b** as white solid.

4a: 48%, 9.6 mg; GC-MS (EI) m/z: 199.2 (M⁺), 184.1, 124.1, 128.1, 98.1. HRMS (ESI⁺) calcd for $C_{11}H_{21}NNaO_2^+$ (M + Na⁺) 222.1465, Found 222.1468. Data consistent with literature values.⁶

4b: 56%, 14.17 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 3.38 (t, J = 6.4 Hz, 2H), 2.41 (s, 3H), 1.84 – 1.73 (m, 4H), 1.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 138.7, 129.4, 127.1, 65.1, 49.4, 42.9, 28.3, 22.5, 21.5. IR (KBr, v / cm⁻¹) 1599, 1459, 1331, 1154, 1100, 1010, 913, 818, 736, 680; GC-MS (EI) m/z: 253 (M⁺), 238, 155, 139, 91; HRMS (ESI⁺) calcd for C₁₃H₁₉NNaO₂S⁺ (M + Na⁺) 276.1029, Found 276.1033.

References

[1] C. Wang, L. Zhang, J. You, Org. Lett. 2017, 19, 1690-1693.

[2] a) O. Bertrand, B. Ernould, F. Boujioui, A. Vlad, J.-F. Gohy, *Polymer Chemistry* **2015**, *6*, 6067-6072; b) E. G. Rozantsev, *Free Nitroxy Radicals*, Plenum Press, New York, **1971**.

[3] N. J. Harper, A. H. Beckett, A. D. J. Balon, *J. Chem. Soc.* (Resumed) **1960**, 2704-2711.

[4] H. Henry-Riyad, T. T. Tidwell, J. Phys. Org. Chem. 2003, 16, 559-563.

[5] P. Carloni, E. Damiani, M. Iacussi, L. Greci, P. Stipa, D. Cauzi, C. Rizzoli, P. Sgarabotto, *Tetrahedron* **1995**, *51*, 12445-12452.

[6] E. T. Hennessy, T. A. Betley, Science 2013, 340, 591-595.

¹H NMR and ¹³C NMR spectrum

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

/ **56**

21 / 56

23 / 56

29 / 56

37 / 56

41 / 56

45 / 56

/ **56**

52 / 56

55 / 56

