Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

## Supporting Information

# In-Flow Photooxygenation of Aminothienopyridinones Generates Iminopyridinedione PTP4A3 Phosphatase Inhibitors

Nikhil R. Tasker,<sup>a</sup> Ettore J. Rastelli,<sup>a</sup> Isabella K. Blanco,<sup>b</sup> James C. Burnett,<sup>a</sup> Elizabeth R. Sharlow,<sup>b</sup> John S. Lazo<sup>b</sup> and Peter Wipf<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States <sup>b</sup>Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States

| 1. Scheme S1. Synthesis of compounds 5, 6, and 7                                                | Page 2  |
|-------------------------------------------------------------------------------------------------|---------|
| 2. Scheme S2. Synthesis of compounds 8a, 9a, 8b, 9b, 8c, and 9c                                 | Page 2  |
| 3. Scheme S3. Synthesis of compounds 8d, 9d, 8e, 9e, 8g, 9g, 8j, 9j, 8p, 2 and 3                | Page 3  |
| 4. Scheme S4. Synthesis of compounds 8f, 9f, 8h, 9h, 8i, 9i, 8k, 9k, 8l, 9l, 8m, 9m, 8n, and 9n | Page 4  |
| 5. Scheme S5. Synthesis of compounds 8o and 9o                                                  | Page 5  |
| 6. Scheme S6. Synthesis of compounds 9p, 9q, and 40                                             | Page 5  |
| 7. Scheme S7. Synthesis of compounds 15, 16, and 17                                             | Page 5  |
| 8. Scheme S8. Synthesis of compounds 18 and 19                                                  | Page 6  |
| 9. Figure S1. Sketch of flow apparatus                                                          | Page 6  |
| 10. Figure S2. Picture of flow apparatus in operation and additional experimental details       | Page 7  |
| 11. Figure S3. Concentration-PTP4A3 phosphatase inhibition response curves                      | Page 9  |
| 12. Table S1. General procedure and results for optimization of photooxygenation                | Page 10 |
| 13. Table S2. Purification methods of 2:3 mixture                                               | Page 11 |
| 14. Table S3. Computational drug-likeness estimates for derivatives of 2                        | Page 12 |
| 15. Single crystal x-ray diffraction data; Table S4                                             | Page 13 |
| 16. Spectrofluorometry and UV-VIS data; Figures S4-S8                                           | Page 14 |
| 17. PTP4A3 Phosphatase assay methods                                                            | Page 20 |
| 18. Molecular modeling methods; Figures S9-S12                                                  | Page 21 |
| 19. Spectra ( <sup>1</sup> H NMR, <sup>13</sup> C NMR, <sup>19</sup> F NMR)                     | Page 25 |

1. Scheme S1. Synthesis of compounds 5, 6, and 7



#### 2. Scheme S2. Synthesis of compounds 8a, 9a, 8b, 9b, 8c, and 9c



3. Scheme S3. Synthesis of compounds 8d, 9d, 8e, 9e, 8g, 9g, 8j, 9j, 8p, 2 and 3





5. Scheme S5. Synthesis of compounds 80 and 90



6. Scheme S6. Synthesis of compounds 9p, 9q, and 40



7. Scheme S7. Synthesis of compounds 15, 16, and 17



## 8. Scheme S8. Synthesis of compounds 18 and 19



ΝO<sub>2</sub>

19

9. Figure S1. Sketch of flow apparatus



49



For preliminary experiments, air was bubbled through the solution for 15 minutes prior to photooxygenation *in-flow*. However, we found that this was unnecessary, and solvent was subsequently used directly from 20 L bulk solvent cans without supplementary treatment with air or oxygen. The photooxygenation reactions were performed in an open system; the beginning and the end of the tubing were open to the ambient atmosphere (i.e. in an oxygen partial pressure of 0.2 atm). While we did not have access to a mass flow controller for gases, at a mole fraction of oxygen in MeOH equal to  $4.15 \cdot 10^{-4}$  in 1 atm of  $O_2$ , and an  $O_2/N_2$  solubility ratio of 1.5,<sup>1</sup> we estimate the concentration of  $O_2$  in our flow system at any time to be at least 2 times higher than the concentration of the substrate of 1.4 mM. The flow rate was adjusted empirically to 1.4 mM and 1.9 mL/min, resulting in a residence time in the flow reactor of 42 min to ensure complete conversion. Since a peristaltic pump is used, we did not install a back-pressure regulator and estimate the internal pressure to be about 1.05 atm. For the white CFL and white LED lights, the external temperature of the capillary tubing did not exceed 42 °C. The flow system was a 14 cm tall coil of capillary tubing with 36 turns, an internal diameter of 10 cm, and a nominal distance of 2 cm from the light source to the coil.

The white LED used was rated 6500K and has a blue peak wavelength at ~458  $\pm$  40 nm.<sup>2</sup> The white CFL has discrete peaks at various intensities around 450 nm,<sup>3</sup> and was also rated 6500K. If a standard white light is unavailable, blue LED lights will also result in conversion. For additional information, please see: <u>https://www.digikey.com/en/articles/techzone/2013/apr/defining-the-color-characteristics-of-white-leds</u>.

<sup>&</sup>lt;sup>1</sup> Battino, R.; Seybold, P. G. "The O<sub>2</sub>/N<sub>2</sub> Ratio Gas Solubility Mystery." J. Chem. Eng. Data **2011**, 56, 5036.

<sup>&</sup>lt;sup>2</sup> Li, H.; Mao, X.; Han, Y.; Luo, Y. "Wavelength Dependence of Colorimetric Properties of Lighting Sources Based on Multi-Color LEDs." *Opt. Express* **2013**, *21*, 3775.

<sup>&</sup>lt;sup>3</sup> Favetta, V.; Colombo, R. C.; Mangili, J. F.; de Faria, R. T. "Light Sources and Culture Media in the in Vitro Growth of the Brazilian Orchid Microlaelia Lundii." *Semina: Ciências Agrárias, Londrina* **2017**, *38*(4), 1775.

The white LED (COB 40W, 6500K, E27) was tubular and fit through the center of the flow apparatus, similar to the white CFL (18W Feit-Electric, Model CE18/T/D6). When used, the red (infrared heat) spot lamp was placed on top of the apparatus.

## WHITE LED:

https://www.amazon.com/Daylight-Workshop-Warehouse-Backyard-

BestCircle/dp/B07GCH95B8/ref=sr 1 3 sspa?hvadid=190507955711&hvdev=c&hvlocphy=9005925&hvnetw=g&hvpos=1t1&hvqmt=b &hvrand=9748065246127574657&hvtargid=kwd-296268375769&ie=UTF8&keywords=e27+bulb+40w&qid=1547818280&sr=8-3spons&tag=googhydr-20&psc=1

## WHITE CFL:

https://www.amazon.com/Feit-Electric-Fluorescent-Daylight-Equivalent/dp/B002962SRG/ref=redir mobile desktop? encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0

When degassed MeOH (3x freeze-pump-thaw) was used according to the optimized conditions, with the end of the tubing open to air, full conversion was observed. In contrast, MeOH that was deoxygenated by sparging and sonication resulted in a diminished conversion. The MeOH was first argon sparged (30 min) under sonication, and the flow system was argon purged (1 h). When the photo-flow reaction was performed under the optimized conditions in this deoxygenated MeOH under an atmosphere of argon, carefully avoiding exposure to air of the open ends of the tubing, only 17% conversion by <sup>1</sup>H NMR was observed. See below for this reaction setup.



Left: Purging line with argon. Right: Flow reaction under argon atmosphere.



Inhibition of PTP4A3 was assayed in 3 independent experiments and the mean results  $\pm$  SEM are indicated.

12. Table S1. General procedure and results for optimization of photooxygenation



The tubing was flushed with ~50 mL of MeOH. Immediately afterwards, a solution of thienopyridone **1** (10 mg) in MeOH (30 mL) was passed through the tubing at a rate of 1.9 mL/min using a peristaltic pump (5 RPM). The tubing was subsequently flushed again with MeOH (40 mL). The crude mixture was concentrated and analyzed by <sup>1</sup>H NMR.

| Entry | Solvent                                       | Additive                         | Flow rate<br>(mL/min) | Light Source | Product Ratio (2:3) |
|-------|-----------------------------------------------|----------------------------------|-----------------------|--------------|---------------------|
| 1     | 1,2-DCE                                       | -                                | 0.1                   | CFL          | 0:1                 |
| 2     | 1,2-DCE                                       | -                                | 0.8                   | CFL          | 1.5:1               |
| 3     | CHCl₃                                         | -                                | 0.8                   | CFL          | 0:1                 |
| 4     | MeOH                                          | -                                | 0.8                   | CFL          | 8.7:1               |
| 5     | MeOH                                          | -                                | 1.5                   | CFL          | 8:1                 |
| 6     | MeOH                                          | -                                | 1.9                   | CFL          | 10:1                |
| 7     | MeOH                                          | -                                | 3.8                   | CFL          | 6.3:1               |
| 8     | <i>i-</i> PrOH                                | -                                | 1.9                   | CFL          | 7.5:1               |
| 9     | HFIP                                          | -                                | 1.9                   | CFL          | 6:1                 |
| 10    | THF                                           | -                                | 1.9                   | CFL          | 6.3:1               |
| 11    | MeOH                                          | -                                | 1.9                   | Red LED      | NR                  |
| 12    | <i>i-</i> PrOH                                | -                                | 1.9                   | Red LED      | 6.7:1               |
| 13    | MeOH                                          | ( <i>i</i> -Pr)₂NEt (5<br>equiv) | 1.5ª                  | CFL          | 5.8:1               |
| 14    | MeOH/AcOH (9:1)                               | -                                | 1.9                   | CFL          | 5.7:1               |
| 15    | MeOH/CF <sub>3</sub> CH <sub>2</sub> OH (1:1) | -                                | 1.9                   | CFL          | 8.3:1               |
| 16    | 1,2-DCE                                       | TPP (1 mol%)                     | 0.1                   | CFL          | 0:1                 |

<sup>a</sup>Starting material was still observed.



| Entry | Conditions                                            | Result                             |
|-------|-------------------------------------------------------|------------------------------------|
| 1     | NH₄OAc, MeOH, 65 °C,                                  | >95% imine, quant., <i>no</i>      |
|       | homogeneous solution, sealed tube                     | chromatography needed              |
| 2     | NH <sub>4</sub> OAc, MeOH, reflux                     | decomposition                      |
| 3     | $NH_3$ in MeOH                                        | decomposition                      |
| 4     | Ph <sub>3</sub> P=NH, THF or MeCN                     | r.s.m. <sup>a</sup>                |
| 5     | BF <sub>3</sub> ·OEt <sub>2</sub> , Et <sub>2</sub> O | r.s.m.                             |
| 6     | NH₄CI, MeOH, 65 °C                                    | r.s.m.                             |
| 7     | NH₄OH, 65 °C                                          | decomposition                      |
| 8     | HMDS, <sup>b</sup> 65 °C                              | r.s.m.                             |
| 9     | HMDS, TBAF, THF, rt                                   | >95% imine, but impurities present |
| 10    | HMDS, excess CsF, DMF, 80 °C                          | >95% imine, but impurities present |

<sup>a</sup>Recovered starting material. <sup>b</sup>Hexamethyldisilyazane.

| 4. Table S3. Computational drug-likeness estimates for derivatives of 2 <sup>a</sup> |
|--------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------|

| Entry | Compound             | Drug-    | cLogP  | cLogS  | Polar   | Mutagenic | Tumorige | Reproductive |
|-------|----------------------|----------|--------|--------|---------|-----------|----------|--------------|
|       |                      | likeness |        |        | surface |           | nic      |              |
|       |                      |          |        |        | area    |           |          |              |
| 1     | JMS-053 ( <b>2</b> ) | 4.393    | 1.545  | -3.430 | 98.26   | No        | No       | No           |
| 2     | 3                    | 0.979    | 1.944  | -4.250 | 91.48   | No        | No       | No           |
| 3     | 9a                   | 4.342    | 1.889  | -3.774 | 98.26   | No        | No       | No           |
| 4     | 9b                   | 4.436    | 2.151  | -4.166 | 98.26   | No        | No       | No           |
| 5     | 9с                   | -2.797   | 2.393  | -4.208 | 98.26   | No        | No       | No           |
| 6     | 9d                   | 3.053    | 1.646  | -3.744 | 98.26   | No        | No       | No           |
| 7     | 9e                   | 2.441    | 2.700  | -4.337 | 124.56  | No        | No       | Yes          |
| 8     | 9f                   | 3.053    | 1.646  | -3.744 | 98.26   | No        | No       | No           |
| 9     | 9g                   | -2.797   | 2.393  | -4.208 | 98.26   | No        | No       | No           |
| 10    | 9h                   | 4.436    | 2.1507 | -4.166 | 98.26   | No        | No       | No           |
| 11    | 9i                   | 4.342    | 1.889  | -3.774 | 98.26   | No        | No       | No           |
| 12    | 9j                   | 4.400    | 1.4747 | -3.448 | 107.49  | No        | No       | No           |
| 13    | 9k                   | 4.436    | 2.151  | -4.166 | 98.26   | No        | No       | No           |
| 14    | 91                   | 3.053    | 1.645  | -3.744 | 189.1   | No        | No       | No           |
| 15    | 9m                   | 3.906    | 2.252  | -4.480 | 98.26   | No        | No       | No           |
| 16    | 9n                   | 3.096    | 2.251  | -4.48  | 204.5   | No        | No       | No           |
| 17    | 90                   | 5.924    | 1.144  | -2.938 | 119.96  | No        | No       | Yes          |
| 18    | 9р                   | 4.693    | -3.068 | 1.798  | 89.47   | No        | No       | No           |
| 19    | 9q                   | 6.403    | 2.522  | -3.884 | 221.85  | No        | No       | No           |
| 20    | 17                   | 1.198    | 1.9437 | -4.25  | 91.48   | No        | No       | No           |

<sup>a</sup> Computational results derived from Data Warrior (http://www.openmolecules.org/datawarrior/).



X-ray crystal structure of 3.

| Table S4. Crystal data and structure refineme | nt for <b>3</b> .                                     |
|-----------------------------------------------|-------------------------------------------------------|
| CCDC                                          | 1880535                                               |
| Empirical formula                             | C <sub>13</sub> H <sub>7</sub> NO <sub>3</sub> S      |
| Formula weight                                | 257.26                                                |
| Temperature                                   | 230(2) K                                              |
| Wavelength                                    | 1.54178 Å                                             |
| Crystal system, space group                   | Triclinic, P-1                                        |
| Unit cell dimensions                          | $a = 5.4276(4) \text{ Å}  \alpha = 69.319(6)^{\circ}$ |
|                                               | $b = 9.6873(7)$ Å $\beta = 82.283(6)^{\circ}$         |
|                                               | $c = 10.8442(8)$ Å $\gamma = 83.399(5)^{\circ}$       |
| Volume                                        | 527.20(7) A <sup>3</sup>                              |
| Z, Calculated density                         | 2, 1.621 Mg/m <sup>3</sup>                            |
| Absorption coefficient                        | 2.742 mm <sup>-1</sup>                                |
| F(000)                                        | 264                                                   |
| Crystal color and shape                       | Light brown plate                                     |
| Crystal size                                  | 0.03 x 0.02 x 0.005 mm                                |
| Theta range for data collection               | 4.380 to 68.418°                                      |
| Limiting indices                              | -11<=h<=11, -12<=k<=11, 0<=l<=12                      |
| Reflections collected                         | 6359                                                  |
| Absorption correction                         | Multi-scan                                            |
| Max. and min. transmission                    | -                                                     |
| Goodness-of-fit on F <sup>2</sup>             | 1.034                                                 |
| Largest diff. peak and hole                   | 0.273 and -0.263 A <sup>-3</sup>                      |

### 16. Spectrofluorometry and UV-VIS data

Compounds **1-3** were excited at 380 nm, in accordance with the absorbance maxima in the UV-Vis spectra, using an HORIBA Jovin Yvon Fluoromax-3 spectrofluorometer in a quartz cuvette with a width of 1 cm. Emission spectra were also obtained at higher wavelengths. The experiments were performed at ambient temperature in methanol (3 mL). Approximately 1 mg of material was used for each experiment.



Figure S4. Emission spectrum of amine 1.



Figure S5. Emission spectrum of imine 2.



Figure S6. Emission spectrum of ketone 3.



Peaks

| Peak #<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Start (nm)<br>600.0<br>316.5 | Apex (nm)<br>352.5<br>286.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | End (nm)<br>316.5<br>269.5 | Height (Abs)<br>0.616<br>0.530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Area (Abs*nm)<br>38.102<br>22.731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Valley (nm)<br>316.5<br>269.5 | Valley (Abs)<br>0.389<br>0.466 | nm<br>428.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Abs<br>0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nm<br>427.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Abs<br>0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Points<br>nm<br>500 0<br>4890 0<br>4800 0                                                                           |                              | Abs<br>0010<br>00112<br>00112<br>00114<br>00114<br>0016<br>0014<br>0016<br>0019<br>0019<br>0020<br>0020<br>0020<br>0020<br>0020<br>0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | nm<br>49955<br>49665<br>49665<br>49655<br>49455<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>49655<br>496555<br>496555<br>4965555555555                                                                                          | Abs<br>0 0111<br>0 0112<br>0 0111<br>0 0011<br>0 00000<br>0 0011<br>0 00000<br>0 00000<br>0 00000<br>0 00000<br>0 00000<br>0 00000<br>0 000000                                                                                                                                                                                                                                                                                                                                                             |                               |                                | $\begin{array}{c} 227.0 \\ 222.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 422.0 \\ 420.0 \\ 411.0 \\ 411.0 \\ 411.0 \\ 411.0 \\ 411.0 \\ 411.0 \\ 411.0 \\ 411.0 \\ 411.0 \\ 411.0 \\ 408.0 \\ 405.0 \\ 405.0 \\ 404.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\ 405.0 \\$ | 0 0223<br>0 0224<br>0 0224<br>0 0225<br>0 0225<br>0 0225<br>0 0225<br>0 0226<br>0 0229<br>0 0324<br>0 0324<br>0 0337<br>0 034<br>0 036<br>0 044<br>0 044<br>0 046<br>0 056<br>0 0560<br>0 0560 | 42845<br>42845<br>42845<br>42845<br>42845<br>42825<br>42825<br>42825<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>41845<br>40055<br>40055<br>40055<br>40055<br>40055<br>40055<br>40055<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30845<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30855<br>30755<br>30755 | 0 022<br>0 023<br>0 025<br>0 025<br>0 027<br>0 027<br>0 027<br>0 027<br>0 027<br>0 027<br>0 027<br>0 027<br>0 027<br>0 031<br>0 033<br>0 033<br>0 033<br>0 033<br>0 034<br>0 036<br>0 045<br>0 00000<br>0 00000<br>0 00000000000000000                                                                                                                                                                                                                                                                                                                                               |
| nm<br>55100<br>35400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34400<br>34100<br>34100<br>34100<br>34100<br>34100<br>34000<br>34000<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800<br>24800 |                              | Abs<br>0.256<br>0.254<br>0.254<br>0.254<br>0.254<br>0.254<br>0.254<br>0.254<br>0.254<br>0.254<br>0.254<br>0.254<br>0.254<br>0.254<br>0.254<br>0.197<br>0.197<br>0.197<br>0.197<br>0.197<br>0.197<br>0.187<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.185<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.2560<br>0.256<br>0.256<br>0.256<br>0.256<br>0.2560<br>0.256<br>0.2560<br>0.2560<br>0.2560<br>0.2 |                            | nm<br>550 5<br>348 5<br>338 5<br>339 5<br>328 5 | Abs<br>0 253<br>0 249<br>0 224<br>0 198<br>0 226<br>0 226<br>0 228<br>0 288<br>0 288<br>0 288<br>0 288<br>0 288<br>0 288<br>0 28 |                               |                                | $\begin{array}{c} nm \\ 2770 \\ 2771 \\ 0 \\ 2772 \\ 0 \\ 2771 \\ 0 \\ 2771 \\ 0 \\ 2771 \\ 0 \\ 2771 \\ 0 \\ 2771 \\ 0 \\ 2771 \\ 0 \\ 2771 \\ 0 \\ 2880 \\ 0 \\ 2880 \\ 0 \\ 2880 \\ 0 \\ 2880 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 2890 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Abs<br>0.483<br>0.472<br>0.472<br>0.472<br>0.468<br>0.468<br>0.468<br>0.468<br>0.468<br>0.468<br>0.650<br>0.524<br>0.524<br>0.550<br>0.550<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.650<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.550<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                     | nm 5<br>2772 5<br>2771 5<br>2702 5<br>2685 6<br>2685 6<br>2686                                                                                                                                                | Abs<br>0 4905<br>0 4470<br>0 4470<br>0 4470<br>0 4470<br>0 4470<br>0 4470<br>0 6470<br>0 6470<br>0 6510<br>0 5531<br>0 5530<br>0 6502<br>0 1005<br>0 100 |

Figure S7. Absorption spectrum of thienopyridone 1 in MeOH.

#### Report Date: 10:24:11, 02/05/2019



Peaks

| Peak#<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Start (nm)<br>600.0<br>329.0 | Apex (nm)<br>379.0<br>271.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | End (nm)<br>329.0<br>230.5 | Height (Abs)<br>0.410<br>1.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Area (Abs*nm)<br>27.584<br>67.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Valley (nm)<br>329.0<br>230.5 | Valley (Abs)<br>0.179<br>0.584 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Point<br>Inm<br>5000 0<br>4497 0<br>4497 0<br>4498 | 5                            | Abs<br>-0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.                                                                                                                                                                                                                                                                                                    |                            | $\begin{array}{c} nn \\ 4988 5 \\ 4985 5 \\ 4489 5 \\ 4489 5 \\ 4489 5 \\ 4489 5 \\ 4489 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4482 5 \\ 4481 5 \\ 4482 5 \\ 4481 5 \\ 4482 5 \\ 4481 5 \\ 4482 5 \\ 4481 5 \\ 4482 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ 4481 5 \\ $ | Abs<br>0 0000<br>0 0001<br>0 0001<br>0 0001<br>0 0001<br>0 0002<br>0 0002<br>0 0002<br>0 0002<br>0 0003<br>0 0004<br>0 0006<br>0 0007<br>0 00007<br>0 00007<br>0 0007<br>0 0007<br>0 0005<br>0 0007<br>0 0 |                               |                                | nm 428 0   427 0 428 0   428 0 428 0   428 0 428 0   428 0 428 0   428 0 428 0   428 0 428 0   428 0 418 0   419 0 418 0   411 0 411 0   411 0 411 0   411 0 411 0   411 0 411 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0 400 0   400 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Abs<br>0.093<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0793<br>0.0191<br>0.0111<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0112<br>0.0211<br>0.0211<br>0.0211<br>0.0211<br>0.0211<br>0.0211<br>0.0211<br>0.0211<br>0.0211<br>0.0211<br>0.0211<br>0.0211<br>0.0211<br>0.0212<br>0.0299<br>0.0299<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0316<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.0326<br>0.                                                                         | nn   427.5   425.5   425.5   425.5   425.5   425.5   425.5   420.5   420.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5   440.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alba<br>0 00515<br>0 001716<br>0 00516<br>0 00526<br>0 00526<br>0 00526<br>0 00526<br>0 00526<br>0 00555<br>0 00556<br>0 005566<br>0 005566<br>0 005566<br>0 005566<br>0 005566                                                                   |
| 111 0   33490 33480   34470 34480   34470 34480   34470 34470   33400 33460   33470 3350   33350 33320   33350 33320   33350 33320   33360 33320   33360 33320   33360 33320   33360 33320   33360 33320   33360 33320   33360 33320   33360 33320   33360 33220   33360 33220   33360 33220   33360 33220   33360 33220   33360 33200   33160 33310   3140 31310   31100 3000   3020 30300   3020 22800   22800 22800   22800 22800   22800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Abs<br>0 259 0 2015<br>0 2435<br>0 2435<br>0 2435<br>0 2435<br>0 2435<br>0 2435<br>0 2435<br>0 2436<br>0 2435<br>0 2436<br>0 2436<br>0 2436<br>0 2436<br>0 2436<br>0 2436<br>0 2446<br>0 1890<br>0 2446<br>0 1890<br>0 2446<br>0 2446<br>0 2456<br>0 2446<br>0 2456<br>0 2456 |                            | $\begin{array}{c} nm \\ nm \\ 340.6 \ 5 \\ 3448.5 \\ 3448.5 \\ 3448.5 \\ 3445.5 \\ 3445.5 \\ 3445.5 \\ 3445.5 \\ 3445.5 \\ 3445.5 \\ 3445.5 \\ 342.5 \\ 5444.5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 333.6 \ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$                                                                                                                                                                                                                                                                                                                                                            | Abs<br>0.2536<br>0.2344<br>0.2244<br>0.2242<br>0.2214<br>0.2214<br>0.2214<br>0.2214<br>0.2214<br>0.2214<br>0.2214<br>0.2214<br>0.2214<br>0.2214<br>0.211<br>0.2116<br>0.1918<br>0.1918<br>0.1918<br>0.1918<br>0.1918<br>0.1918<br>0.1918<br>0.1918<br>0.1919<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.1719<br>0.2717<br>0.2717<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777<br>0.2777 |                               |                                | nm<br>2773 0<br>2773 0<br>2770 0<br>2700 0<br>2760 0<br>2660 0<br>2600 0 | Abs<br>1.164<br>1.171<br>1.172<br>1.172<br>1.172<br>1.165<br>1.164<br>1.164<br>1.134<br>1.134<br>1.100<br>1.080<br>1.080<br>1.080<br>1.086<br>1.086<br>1.086<br>1.035<br>1.033<br>1.033<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.035<br>1.03 | nm<br>273.5<br>270.5<br>270.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>289.5<br>285.5<br>289.5<br>289.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285.5<br>285 | Abs<br>1.169<br>1.172<br>1.177<br>1.177<br>1.167<br>1.160<br>1.160<br>1.160<br>1.160<br>1.160<br>1.160<br>1.160<br>1.160<br>1.160<br>1.160<br>1.160<br>1.074<br>1.074<br>1.074<br>1.075<br>1.075<br>0.9564<br>0.9564<br>0.9564<br>0.9564<br>0.9564<br>0.9564<br>0.889<br>0.889<br>0.889<br>0.889<br>0.889<br>0.868<br>0.566<br>0.6584<br>0.566<br>0.6584<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.5664<br>0.56656<br>0.56656<br>0.56656<br>0.56656<br>0.56656<br>0.56656<br>0.56656<br>0.56656 |

Figure S8. Absorption spectrum of imine 2 in MeOH.

#### 17. PTP4A3 Phosphatase Activity Assay

All compounds were evaluated *in vitro* with 1  $\mu$ g full-length recombinant human His<sub>6</sub>-PTP4A3, as previously described.<sup>20</sup> The assay was fully automated using an Agilent Bravo Liquid Handling Platform and miniaturized to 15  $\mu$ L total volume. The liquid handler performed a two-fold serial dilution of each compound to achieve a 10-point concentration curve. Assays were performed in 40 mM Tris-HCl (pH 7.0), 75 mM NaCl, 2 mM EDTA, 0.099% BSA and 4 mM DTT; the reaction was initiated upon the addition of 12  $\mu$ M 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) and incubated at 25 °C for 25 min before measuring fluorescence at Ex = 358 nm/Em = 455 nm using a SpectraMax M5 plate reader. Each component was prepared at 3x the final concentration and dispensed 5  $\mu$ L at a time into the wells of black 384-well low volume plates using the liquid handler; compound was dispensed first, followed by PTP4A3, then DiFMUP. Percent inhibition of enzyme activity was calculated using PTP4A3 in the absence of inhibitor as maximal activity and PTP4A3 with 2 mM Na<sub>3</sub>VO<sub>4</sub> as minimal activity. The IC<sub>50</sub> value for each compound was determined using GraphPad and was reported as the mean of three to six independent assays, with six replicates each.

#### 18. Molecular modeling methods

Four PTP4A3 structures are available in the RCSB Protein Data Bank (PDB) (https://www.rcsb.org/). Three are NMR structures, and include PDB entries 1R6H (Ref: G., Kozlov, J., Cheng, E., Ziomek, D., Banville, K., Gehring, and I, Ekiel, J. Biol. Chem., 2004, 279, 11882), 1V3A (Ref: K.A., Kim, J.S., Song, J., Jee, M.R., Sheen, C., Lee, T.G., Lee, S., Ro, J.M., Cho, W., Lee, T., Yamazaki, Y.H., Jeon, and C. Cheong, FEBS Lett., 2004, 565,181), and 2MBC (Ref: K.W., Jeong, D.I., Kang, E., Lee, A., Shin, B., Jin, Y.G., Park, C.K., Lee, E.H., Kim, Y.H., Jeon, E.E., Kim, and Y., Kim, Biochemistry, 2014, 53, 4814), and the fourth, and most recently deposited PDB entry, 5TSR (Ref: H., Zhang, G., Kozlov, X., Li, H., Wu, I., Gulerez, and K., Gehring, Sci. Rep., 2017, 7, 48), is an X-Ray structure (3.19 Å resolution). Entries 1R6H and 1V3A are 'open' WPD-loop conformations of the enzyme; entries 2MBC and 5TSR are 'closed' WPD-loop conformations. Figure S9, shows representative/general conformational differences in the 'opened' versus the 'closed' WPD-loop structures based on a comparison between 1V3A and 5TSR. The loop colors and residues shown in Figure S9 parallel those shown in Figure 1 (in the main manuscript). Structural comparison of the opened and closed conformations of the enzyme formed the basis for the compound binding hypothesis presented in the manuscript. Specifically, the open WPD-loop conformation of the enzyme, which also has a less compact P-loop orientation, provides a sterically unimpeded approach for inhibitor binding. Therefore, it was hypothesized that, as the iminopyridinedione-based compounds approach the enzyme, and the WPD-loop and P-loop are concomitantly reorienting to adopt the closed conformation to impede access to the enzyme's catalytic Cys104, the inhibitor engages these loops in such a way that key, favorable intermolecular contacts are formed, thereby locking the enzyme in the inactive state. Following, as we hypothesize in the main text of the manuscript, it is possible that such a binding mode places the inhibitors in a position that can potentially result in a covalent bond with Cys104 (Figure 1, Panel (b) in the main manuscript).

Based on this binding hypothesis, the representative inhibitor **2** was docked into the closed conformation of the enzyme. X-ray crystal structure 5TSR (A chain) was chosen as the starting structure for the docking study, *i.e.*, over that of NMR structure 2MBC, as its architecture is more well defined. For example, as seen in **Figure S10**,  $\alpha$ -helix residues Thr56 – Glu59, and residues in  $\beta$ -sheets: Ala42 – Arg47 and Thr64 – Asp67, respectively, are more well defined in 5TSR versus 2MBC. Moreover, the Ramachandran plot of 5TSR indicates a strikingly better distribution of data points in favored regions versus PDB entry 2MBC. Note, the Ramachandran plots were generated using Maestro v2016 software (Schrödinger, LLC, New York, NY)).

PTP4A3 structure refinement, and the docking and optimization of inhibitor **2**, followed a protocol that has been described in detail (**Refs**: **a**) J.C., Burnett, C., Lim, B.D., Peyser, L.P., Samankumara, M., Kovaliov, R., Colombo, S.L., Bulfer, M.G., LaPorte, A.R., Hermone, C.F., McGrath, M.R., R., Gussio, D.M., Huryn, and P. Wipf, *Org. Biomol. Chem.*, 2017, **15**, 4096; **b**) M.G., LaPorte, J.C., Burnett, R., Colombo, S.L., Bulfer, C., Alverez, T.F., Chou, R.J., Neitz, N., Green, W.J., Moore, Z., Yue, S. Li, M.R., Arkin, P. Wipf, and D.M. Huryn, *ACS Med. Chem. Lett.*, 2018, **18**, 1075). As indicated in the paragraph above, PDB entry 5TSR was used for enzyme coordinates (with the Ala 104 mutation in the original structure being replaced with the native Cys residue). Energy refinement of the enzyme only was first performed (due to its low resolution) using the Discovery module of the Insight 2005 program (Dassault Systèmes BIOVIA, San Diego, CA). The protocol was iterative, with the following settings being used: cff91 force field and distance dielectric = 1.0. First, hydrogens only were minimized via 200 cycles of steepest descents, followed by conjugate gradients until the RMS gradient was < 0.001 kcal/Å. Subsequently, a tethering algorithm was employed to energy refine the side chains. Specifically, with all backbone atom coordinates fixed, and a force constant of 100 kcal/Å applied, 100 steps of steepest descents, followed by 200 steps of conjugant gradients, was repeatedly cycled until the RMS gradient was < 0.001 kcal/Å. Next, all atoms of the enzyme, including backbone atoms, were energy refine using the same tethered minimization protocol indicated above, *i.e.*, for side chain refinement. Finally, all tethers were removed, and all enzyme atoms were allowed to move freely. For this final step, 200 cycles of steepest descents minimization were performed, and were followed by conjugate gradients minimization until the RMS gradient was < 0.001 kcal/Å.

For inhibitor 2 docking, compound coordinates were obtained from the Cambridge Crystallographic Data Centre (entry code IPOLOQ) (Ref: J.M., Salamoun, K.E., McQueeney, K. Patil, S.J., Geib, E.R., Sharlo, J.S., Lazo, and P., Wipf, Org. Biomol. Chem., 2016, 14, 6398), and energy refined using Discovery Studio 2018 software (Dassault Systèmes BIOVIA, San Diego, CA). Energy refinement of the small molecule was performed using the MMFF force field. Two hundred steps of steepest descent, followed by conjugate gradients minimization until the RMS gradient was < 0.001 kcal/Å. To identify a compatible binding site location on the enzyme that would both accommodate the polar iminopyridinedione component of inhibitor 2, as well as the compound's hydrophobic phenyl component, the SiteMap application in Maestro v2016 was used to evaluate the open form of the enzyme (PDB entry 1V3A). Figure S11 shows the site map, which indicated that polar compatibility for the iminopyridinedione component of the inhibitor chemotype could be sequestered from backbone atoms of residues composing the P-loop, while at the same time indicating that a distal, mainly hydrophobic pocket near Trp 68 of the WPD loop could accommodate the inhibitor's phenyl component. Using this information, the same residues composing this site were examined in their coordinate positions in the closed, energy refined model of the enzyme generated from 5TSR (vide supra), and it was determined that there was the necessary combination of location, and both polar and hydrophobic compatibility to warrant exploratory docking. Subsequently, due to the complexity of the binding site and the flexible loops associated with it, inhibitor 2 docking was performed manually using Insight 2005, as the graphical user interface of this program provides not only three-dimensional viewing capability, but also dial box control, thereby allowing for fine, well controlled small molecule movement/manipulation, as well as the ability to select, retain, and modify multiple torsions with a single F7 key stroke that allows for quick movement from one selected torsion to the next. Following, inhibitor 2 was oriented into the predicted binding location, and with the intermolecular van der Waals bump set to 0.25 Å,

small molecule adjustments (translational, rotational, and torsional) and side chain torsional adjustments were performed to remove unacceptably close intermolecular and unfavorable intermolecular contacts, as well as to optimize favorable intermolecular contacts. Subsequently, the same energy minimization protocol that was used for the initial enzyme-only energy refinement (*vide supra*) was subsequently performed a second time on the enzyme:inhibitor complex.

A final, exploratory inhibitor binding pose for inhibitor **2** was generated using a method employing the HINT scoring algorithm (eduSoft LLC, Richmond, VA); this method has been described in detail previously (**Ref**: J.C., Burnett, C., Lim, B.D., Peyser, L.P., Samankumara, M., Kovaliov, R., Colombo, S.L., Bulfer, M.G., LaPorte, A.R., Hermone, C.F., McGrath, M.R., R., Gussio, D.M., Huryn, and P. Wipf, *Org. Biomol. Chem.*, 2017, **15**, 4096). It is notable that the HINT program is unique in that it quantitates intermolecular contacts categorically by classifying atom-atom contacts as either favorable and positive (hydrogen bonds, acid/base contacts, and hydrophobic/hydrophobic contacts) or unfavorable and negative (acid/acid, base/base, and importantly, hydrophobic polar). Hence, using HINT-based atom-atom interaction scores as guides, it is possible to generate small molecule:inhibitor binding modes, in this case inhibitor **2**:PTP4A3, with optimized favorable intermolecular contact scores and significantly assuaged unfavorable intermolecular contact scores. Finally, an optimized docking model of inhibitor **2** was prepared using iterative rounds of HINT scoring, tethered minimizations, manual adjustments to inhibitor coordinates (including translational, rotational, and torsional), and torsional adjustments to surrounding side chain residues, and HINT scoring. In this way, we were able to use SAR-directed modeling, which provided a biochemically feasible binding mode rationalizing the IC<sub>50</sub> values shown in **Table 2** of the main text of the manuscript. For the final binding model versus the original 5TSR structure, the RMSD was 1.28 Å (based on the comparison of backbone atom  $\alpha$ -helix,  $\beta$ -sheet, and loop coordinates). This RMSD is well within the 3.19 Å resolution of the original X-ray structure.

The Ramachandran plot for the inhibitor **2**:PTP4A3 structure is shown in Figure **S12**, and PDB coordinates for the exploratory docking model are provided as a separate Supporting Information file.



**Figure S9**. Conformational differences in the 'opened' versus the 'closed' WPD-loop structures based on a comparison between PDB entry 1V3A (light brown cartoon) and PDB entry 5TSR (light blue cartoon). In both structures, the WPD-loop, the P-loop, and a loop predicted to impact inhibitor **2** binding (and is composed of residues 47 – 55) are shown in slate, cyan, and teal cartoon, respectively. The open WPD-loop conformation of the enzyme, which also possesses a less compact P-loop orientation, provides a sterically unimpeded approach for inhibitor binding. The closed WPD-loop conformation of the enzyme, which also possesses a more compact P-loop conformation, impedes access to the enzyme's catalytic Cys104.



**Figure S10**. Comparison of closed WPD-loop structures 2MBC (solved by NMR) and 5TSR (solved using X-ray crystallography). Panel (a): PDB entry 2MBC is shown in pale green cartoon, and example residue stretches that are architecturally less well defined in this structure versus corresponding residues in PDB entry 5TSR are shown in red cartoon. The Ramachandran plot for 2MBC is shown underneath the cartoon. Panel (b): PDB entry 5TSR is shown in light blue cartoon, and its corresponding Ramachandran plot is shown underneath. The Ramachandran plot for 5TSR indicates a strikingly better distribution of data points in favored regions versus that of 2MBC.



**Figure S11**. Site map was used to identify a potentially compatible binding location for inhibitor **2**. PTP4A3 (PDB entry code 1V3A) is shown in light blue cartoon. Select residues are shown in CPK with green carbons, while Cys104 is shown with magenta carbons. Site map points are represented by small white spheres. Red and blue contours indicate mapped hydrogen bond donor and acceptor sites, respectively. Yellow contours indicate mapped hydrophobic sites. The dashed black lines delineate the potential inhibitor **2** binding location that was identified by the SiteMap application in Maestro v2016.



Figure S12. Ramachandran plot of the final PTP4A3 structure (i.e., post energy minimization to obtain the final inhibitor 2 docking model).

19. Spectra (<sup>1</sup>H NMR, <sup>13</sup>C NMR, <sup>19</sup>F NMR)





S27









S30



S31



S32

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

S34

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)




















o≭



























































ЧZ

0=

Ц
















































S80



S81















86.111-----







































S103




















S111































































S137






















































Ŧ

л Г<sup>3</sup>С







































