Thieno[3,2-b]thiophene fused BODIPYs: synthesis, near-infrared luminescence and photosensitive properties

Yijuan Sun, Zhirong Qu, Zhikuan Zhou, Lizhi Gai* and Hua Lu*

Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou

Normal University, Hangzhou, 311121, P. R. China. E-mail: lizhigai@hznu.edu.cn; hualu@hznu.edu.cn

Electronic Supplementary Information

I. Experimental Section

I.1 Materials and instrumentations	S2
I.2 Spectroscopic measurements	S2-S3
I.3 The quantum yield of singlet oxygen	
I.4 NICS calculations	S4
I.5 DFT optimized geometry of compound BDP-1b , BDP-3b , 1 , 2	
II. References	
III. ¹ H NMR, ¹⁹ F NMR, ¹¹ B NMR and HR-MS spectra	S10-S14

I. Experimental Section

I.1 Materials and instrumentations

All reactions and manipulations of air-sensitive compounds were carried out under a dry argon atmosphere by using Schlenk techniques and/or vacuum line techniques. All reagents were obtained from commercial suppliers and used without further purification unless otherwise indicated. All air- and moisture-sensitive reactions were carried out under a nitrogen atmosphere. Glassware was dried in an oven at 100°C and cooled under a stream of inert gas before use. Dichloromethane and triethylamine were distilled over calcium hydride. ¹H NMR, ¹⁹F NMR, ¹¹B NMR spectra were recorded on a Bruker DRX400 spectrometer and referenced to the residual proton signals of the solvent. HR-MS were recorded on a Bruker Daltonics microTOF-Q II spectrometer. All the solvents employed for the spectroscopic measurements were of spectroscopic grade.

I.2 Spectroscopic measurements

Fig S1. The absorption and emission spectra of 1-2 in hexane, toluene, DCM, THF, MeOH, CH₃CN (Top for 1; bottom for 2. left: absorption spectra, right: emission)

Fig S2. The absorption of full spectra of 1 and 2 in DCM.

I.3 The quantum yield of singlet oxygen

Singlet oxygen quantum yields of the photosensitizers were calculated by monitoring the photooxidation of 1,3-diphenyl isobenzofuran (DPBF), a known singlet oxygen scavenger, using MB as the standard (Φ_{Δ} = 0.57 in dichloromethane).^[S2] The mixture of photosensitizer and DPBF was irradiated with a 690 nm laser beam at a power of 100 mW cm⁻² at 30 s intervals. The absorbance was measured after each irradiation and a decrease in the absorption band intensity for DPBF at 410 nm was observed. The following equation was used to calculate the singlet oxygen quantum yield of sensitizer:

$$\Phi_{\Delta(x)} = \Phi_{\Delta(\text{std})} (\frac{S_x}{S_{\text{std}}}) (\frac{F_{\text{std}}}{F_x})$$

where $\Phi_{\Delta(x)}$ is the single oxygen quantum yield of sample, the ' χ ' and 'std' subscripts denote the sample and MB standard, respectively, *S* denotes the slope of a plot of the change in absorbance for DPBF at 410 nm *vs* the irradiation time, and F is the absorption correction factor, which is given by $F = 1-10^{-OD}$ (where OD represents the optical density of sample and MB at the irradiation wavelength).

Fig. S3 Changes in the absorption spectra of DPBF upon irradiation (λ_{irr} =690 nm) in the presence of 1 (left) and 2 (right) with 40s interval in CH₂Cl₂.

	1	2	MB
Slope	1.79×10-3	9.80×10-4	3.62×10-4
R2 values	0.9979	0.9990	0.9952

Fig. S4 The slope of the graph obtained by plotting the changes in optical density against time is used to calculate the quantum yield of singlet oxygen.

I.4 NICS value calculations

Fig. S5 Nuclear Independent Chemical Shift (NICS (0)) values were calculated using the DFT-GIAO method with the $6-31g(d, p)^{S1}$ for the optimized structures of parent BODIPY and 1

I.5 DFT optimized geometry of compound **BDP-1b**, **BDP-3b**, **1**, **2** Table S1. DFT optimized geometry of compound **BDP-1b**.

Center	Atomic	Atomic	c Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	-0.815139	0.914249	0.014117
2	7	0	0.441887	1.537840	-0.000103
3	5	0	1.785894	0.831451	0.072108
4	7	0	1.510389	-0.673055	0.003408
5	6	0	0.251321	-1.332110	0.013261
6	6	0	-0.911000	-0.498738	0.030280
7	6	0	2.498354	-1.569852	-0.039999
8	6	0	1.965297	-2.865712	-0.063834
9	6	0	0.584824	-2.760682	-0.031914
10	6	0	-1.791311	1.982101	-0.031151
11	6	0	-1.090443	3.178877	-0.070891
12	6	0	0.281783	2.866679	-0.048328
13	6	0	-2.347554	-0.987817	0.025692
14	9	0	2.608150	1.225009	-1.012621
15	9	0	2.445260	1.150006	1.287943
16	9	0	-2.563526	-2.314220	0.213398
17	9	0	-3.086597	-0.393324	1.023896
18	9	0	-2.971104	-0.684092	-1.169081
19	1	0	2.543428	-3.776113	-0.102031
20	1	0	-1.504546	4.174574	-0.111760
21	6	0	-0.292463	-4.014163	-0.052069
22	1	0	-0.857223	-4.082576	0.856794
23	1	0	-0.957639	-3.985553	-0.893125
24	1	0	0.344302	-4.878028	-0.135993
25	6	0	-3.320013	1.888789	-0.040448
26	1	0	-3.643969	1.255414	-0.844131
27	1	0	-3.667583	1.489028	0.891507
28	1	0	-3.730349	2.873937	-0.177344
29	6	0	1.485333	3.808123	-0.071267
30	1	0	2.095843	3.629559	0.796322
31	1	0	2.065800	3.626227	-0.958439
32	1	0	1.143824	4.828068	-0.067370

33	6	0	3.962267	-1.131806	-0.057630	
34	1	0	4.153208	-0.556057	-0.945892	
35	1	0	4.165083	-0.527306	0.808777	
36	1	0	4.597249	-1.999953	-0.047722	
				- Electronic	energies of	optimized

geometries of **BDP-1b**: -1175.21783360 a.u.

--

Table S2. DFT optimized geometry of compound **BDP-3b**. :

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	16	0	5.091137	-0.625102	-0.211581
2	16	0	-5.134494	-0.535961	-0.210112
3	9	0	-0.055285	-2.869405	-0.653226
4	9	0	-0.045274	-2.315889	1.595345
5	9	0	0.545806	3.178790	-1.167538
6	9	0	-1.122782	3.344154	0.297163
7	7	0	-1.252367	-0.873435	0.055809
8	7	0	1.204687	-0.911313	0.054244
9	6	0	-3.267960	-2.485600	-0.099030
10	6	0	4.578588	-2.363341	-0.190246
11	6	0	2.566385	0.956795	-0.022728
12	6	0	-2.592263	1.012603	-0.025497
13	6	0	-0.001866	1.200734	0.082595
14	6	0	-2.541428	-1.268650	-0.039622
15	6	0	2.489692	-1.323503	-0.041455
16	6	0	3.349886	-0.178690	-0.090066
17	6	0	-3.387280	-0.112903	-0.090195
18	6	0	0.083144	2.703730	0.062708
19	5	0	-0.035240	-1.777161	0.267469
20	6	0	3.200087	-2.549709	-0.103316
21	6	0	1.208727	0.495845	0.063732
22	6	0	-1.234881	0.538867	0.062696
23	6	0	-4.644248	-2.280642	-0.185255
24	9	0	0.970435	3.191374	1.020936
25	1	0	-5.349854	-3.083621	-0.232644
26	1	0	-2.810733	-3.452799	-0.079808
27	1	0	2.730009	-3.510750	-0.085255
28	1	0	5.273483	-3.175462	-0.240032
29	6	0	-3.024803	2.490399	-0.050529
30	1	0	-2.758489	2.955712	0.875462
31	1	0	-2.532135	2.992622	-0.856724
32	1	0	-4.084317	2.549643	-0.187719

33	6	0	3.011105	2.431060	-0.041939
34	1	0	2.492394	2.949953	-0.820777
35	1	0	2.784861	2.884159	0.900618
36	1	0	4.065054	2.483393	-0.219006

Electronic energies of optimized geometries of **BDP-3b**: -2045.31138242 a.u.

Center	Atomic	Atomic	c Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1		0	-2.859332	-3.042546	0.018206	
2	16	0	2.821802	-3.072322	0.012610	
3	16	0	5.048615	0.531748	-0.307298	
4	16	0	-5.057382	0.578423	-0.311936	
5	9	0	-0.020896	-1.796613	-0.197085	
6	9	0	-0.013886	-0.866038	1.893631	
7	9	0	0.215835	4.244069	-1.273688	
8	9	0	-1.082104	4.448774	0.458503	
9	7	0	-1.233025	0.270632	0.144378	
10	7	0	1.221365	0.252576	0.144369	
11	6	0	5.328930	-2.377592	-0.272272	
12	1	0	6.403960	-2.438923	-0.392957	
13	6	0	-3.231130	-1.344029	-0.045847	
14	6	0	4.582105	-1.175110	-0.208446	
15	6	0	2.569632	2.114044	-0.055501	
16	1	0	2.872888	3.146209	-0.130396	
17	6	0	-2.567705	2.141781	-0.062251	
18	1	0	-2.865474	3.174098	-0.144197	
19	6	0	0.005404	2.349201	0.122307	
20	6	0	-4.547297	-3.429084	-0.156257	
21	1	0	-4.852175	-4.467572	-0.172042	
22	6	0	-2.511827	-0.127830	0.008706	
23	6	0	2.497766	-0.155329	0.009202	
24	6	0	4.506871	-3.472346	-0.161902	
25	1	0	4.803216	-4.513250	-0.179961	
26	6	0	3.355643	0.981692	-0.120200	
27	6	0	-3.361104	1.015219	-0.124079	
28	6	0	-5.360559	-2.328026	-0.269957	
29	1	0	-6.435962	-2.380874	-0.391277	
30	6	0	0.045434	3.859892	0.009724	
31	5	0	-0.011406	-0.612490	0.535002	
32	6	0	3.207573	-1.376841	-0.047150	

Table S3. DFT optimized geometry of compound 1. :

33	6	0	1.222775	1.649321	0.100768
34	6	0	-1.222487	1.669224	0.097198
35	6	0	-4.603990	-1.131684	-0.208646
36	9	0	1.062912	4.389859	0.722739

Electronic energies of optimized geometries of 1: -2915.44102221 a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	16	0	-2.849454	- 1.468785	0.105133
2	16	0	2.831712	-1.492324	0.102495
3	16	0	5.054665	2.106525	-0.293885
4	16	0	-5.051374	2.141794	-0.303645
5	9	0	-0.012308	-0.224595	-0.135726
6	9	0	-0.007232	0.750702	1.934511
7	9	0	0.218191	5.791817	-1.341801
8	9	0	-1.080722	6.032249	0.385061
9	7	0	-1.226875	1.848155	0.160738
10	7	0	1.227533	1.832846	0.162117
11	6	0	5.338191	-0.801075	-0.196229
12	1	0	6.413340	-0.863785	-0.315131
13	6	0	-3.223107	0.227547	0.004442
14	6	0	4.590005	0.401665	-0.158565
15	6	0	2.573822	3.691095	-0.077161
16	1	0	2.875965	4.721751	-0.174097
17	6	0	-2.563540	3.712939	-0.086600
18	1	0	-2.862417	4.742923	-0.190833
19	6	0	0.009258	3.927152	0.094507
20	6	0	-4.536913	-1.860869	-0.061670
21	6	0	-2.505177	1.445441	0.033139
22	6	0	2.504444	1.423558	0.036267
23	6	0	4.517299	-1.894123	-0.062694
24	6	0	3.361115	2.558493	-0.117190
25	6	0	-3.355663	2.584422	-0.124526
26	6	0	-5.351347	-0.763418	-0.199337
27	1	0	-6.426639	-0.820063	-0.319932
28	6	0	0.047662	5.435119	-0.050499
29	5	0	-0.004447	0.974997	0.570748
30	6	0	3.215629	0.201910	0.006468

31	6	0	1.227413	3.228332	0.088510
32	6	0	-1.217867	3.245421	0.083516
33	6	0	-4.596131	0.434810	-0.163443
34	9	0	1.064244	5.981423	0.651376
35	53	0	-5.055445	-3.634596	-0.050723
36	53	0	5.025228	-3.670933	-0.055120

Electronic energies of optimized geometries of 2: -2936.90870422 a.u.

II. References

- S1 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.
- S2 Y. C. Yang, Q. L. Guo, H. C. Chen, Z. K. Zhou, Z. J. Guo and Z. Shen, Chem. Commun., 2013, 49, 3940.

III. HRMS-ESI and ¹H NMR spectra

¹H NMR spectra of compound 6

¹H NMR spectra of compound 5

¹H NMR spectra of compound 2

¹⁹F NMR spectra of compound 2