Catalytic asymmetric aza-Michael addition of fumaric monoacids with multifunctional thiourea/boronic acids

Kenichi Michigami, Hiroki Murakami, Takeru Nakamura, Noboru Hayama and Yoshiji Takemoto*

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan

takemoto@pharm.kyoto-u.ac.jp

Supporting Information

Table of Contents

(A)	Supple	emental Data	
	(A-1)	Optimisation Details: Tables S1-S6	S 3
	(A-2)	Determination of Stereochemistry	S5
(B)	Genera	al	S 6
(C)	Materi	als and Methods	
	(C-1)	Preparation of Substrates	S 7
	(C-2)	Preparation of Nucleophiles	S10
	(C-3)	General Procedure for Catalytic Aza-Michael Addition	S12
(D)	O-Dep	protection and KAHA Ligation	S18
(E)	Refere	ences	S20
(F)	¹ H NM	IR and ¹³ C NMR Spectra	S21
(G)	HPLC	Traces	S87

(A) Supplemental Data

entry

1

2

3

4

5

6

(A-1) Optimisation Details: Tables S1-S8

Several reaction parameters of the enantioselective aza-Michael addition were investigated. In each tables are described isolated yields.

^t BuO ₂ C CO ₂ H		catalyst A (10 mol%) <u>BnONH</u> ₂ 2a (1.1 equiv) MS4A, solvent (0.2 M) rt, 24 h; then TMSCHN ₂) E v) → tBuC	$\frac{BnO}{E} \xrightarrow{H} CO_2Me$		(HO) ₂ B catalyst A	
entry	solvent	3aa (%)	ee (%)	entry	solvent	3aa (%)	ee (%)	
1	DMF	0	-	7	hexane	35	38	
2	MeCN	0	-	8	CCl_4	70	88	
3	EtOAc	0	-	9	C_2Cl_4	70	81	
4	Et ₂ O	22	28	10	$4-F_3CC_6H_4Cl$	55	73	
5	CH_2Cl_2	10	47	11	PhF	15	62	
6	toluene	60	69	12	PhCl	29	7	

 Table S1. Investigation of Solvent Effect

Table S2. Deviation of Thioureas of Multifunctional Organoboron Catal
--

Е

F

Table S3. Screening of Acid Additives

^t BuO ₂ C CO ₂ H	catalyst / BnONH2 additive (1 CCl ₄ (0.2 then 1	A (10 mol%) 2a (1.1 equiv) equiv), MS4A 2 M), rt, 24 h; MSCHN ₂	BnO ^t BuO ₂ C 3a	H CO ₂ Me a	(HO) ₂ E catalys
	entry	additive	3 aa (%)	ee (%)	
	1	none	80	88	
	2	HCO ₂ H	0	-	
	3	MeCO ₂ H	57	91	
	4	^t BuCO ₂ H	77	87	
	5	PhCO ₂ H	76	<i>93</i>	
	6	TsOH∙H₂O	0	-	

Table S4. Investigation of Nucleophiles

Figure S1. Unsuccessful Substrates

Monomethyl fumarate (**S1a**) and fumaryl monoanilide (**S1b**) did not undergo the aza-Michael addition, probably due to low solubility in CCl₄.

(A-2) Determination of Stereochemistry

The aza-Michael adduct **3aa** was converted into *N*-Fmoc-aspartic diester **S3aa** and the stereochemistry was determined as *R* configuration by comparison of HPLC charts and optical rotations with (*S*)-*N*-Fmoc-aspartic diester derived from the commercially available mono-*tert*-butyl-L-aspartate (Scheme S1).

Scheme S1

(B) General

All manipulations were carried out under argon atmosphere unless otherwise noted. Infrared (IR) spectra were recorded on a JASCO FT/IR-4100 Fourier transform infrared spectrophotometer. NMR spectra were recorded on a JEOL ECP-400 spectrometer and JEOL ECA-500 spectrometer, operating at 400 MHz (¹H) or 100 MHz (¹³C) and 500 MHz (¹H) or 125 MHz (¹³C), respectively. Chemical shifts in CDCl₃, DMSO-*d*₆, and CD₃OD were reported in the scale relative to CHCl₃ (7.26 ppm), DMSO (2.50 ppm), and MeOH (3.31 ppm) for ¹H NMR, and to CDCl₃ (77.0 ppm) for ¹³C NMR as internal references, respectively. NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, quin: quintet, m: multiplet, br: broad signal), coupling constant (Hz), and integration. ESI-HRMS spectra were measured on a Shimadzu LCMS-IT-TOF fitted with an ESI. Optical rotations were measured on a JASCO P-2200 digital polarimeter with a path length of 1 cm; concentrations are quoted in grams per 100 mL. ^{[*α*]_{*p*}values are measured in 10⁻¹ deg cm²/g. Chiral HPLC analyses were carried out using a SHIMADZU DGU-20A₅. Column chromatography was performed with Cica silica gel 60N (40-100 µm, spherical, neutral). Dry solvents were purchased from Wako Pure Chemical Industries, Ltd. and used as received. Organocatalysts **A-F** were prepared according to our developed procedures.¹}

(C) Materials and Methods

(C-1) Preparation of Substrates

Monoethyl fumarate (1c) was purchased from Tokyo Chemical Industry Co., Ltd. Monomethyl fumarate (S1a) was purchased from Sigma-Aldrich Co. LLC. mono-*tert*-butyl fumarate (1a)² and (*E*)-4-oxo-4-(phenylamino)but-2-enoic acid (S1b)³ were prepared according to the reported procedures.

Mono-tert-butyl fumarate (1a)²: White solids.

CO₂H ¹H NMR (400 MHz, CDCl₃) δ : 6.87 (d, J = 15.6 Hz, 1H), 6.76 (d, J = 15.6 Hz, 1H), 1.52 (s, 9H) ppm.

(E)-4-Oxo-4-(phenylamino)but-2-enoic acid (S1b)³: White solids.

1a

^tBuO₂C

IR (neat) \tilde{v} : 1696, 1654 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ : 12.99 (br s, 1H), 10.51 (s, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.14 (d, J = 15.2 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 6.65 (d, J = 15.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 166.4, 161.6, 138.6, 137.2, 130.8, 128.9, 124.0, 119.4 ppm;

HRMS (ESI) *m/z* calcd. for [M-H]⁻: 190.0510, found: 190.0521.

Monobenzyl fumarate (1b)⁴: To a solution of benzyl *tert*-butyl fumarate⁵ (262.1 mg, 1.0 mmol, 1 equiv) in CH_2Cl_2 (4.0 mL) was added TFA (1.8 mL) and stirred at room temperature for 7 h. The mixture was concentrated, and the resulting solids were recrystallised from CH_2Cl_2 and hexane to afford 1b as white solids (138.4 mg, 0.67 mmol, 67%).

IR (neat) \tilde{v} : 2940, 1719, 1694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 7.39-7.34 (m, 5H), 6.99 (d, J = 16.0 Hz, 1H), 6.88 (d, J = 16.0 Hz, 1H), 5.25 (s, 2H) ppm.

Ethyl (S,E)-4-((1-(tert-butoxy)-1-oxo-3-phenylpropan-2-yl)amino)-4-oxobut-2-enoate (S1d):

A mixture of L-phenylalanine *tert*-butyl ester hydrochloride⁶ (1.32 g, 6.0 mmol, 1.0 equiv), monoethyl fumarate (944.0 mg, 6.6 mmol, 1.1 equiv), HOBt (972.0 mg, 7.2 mmol, 1.2 equiv), Et₃N (1.82 g, 18.0 mmol, 3.0 equiv) and EDCI (1.38 g, 7.2 mmol, 1.2 equiv) in DMF (30 mL) was stirred

at room temperature for 20 h. The solution was diluted with brine (20 mL) and extracted with Et_2O (20 mL, 2 times). The combined organic phase was dried over Na_2SO_4 followed by filtration and concentration under reduced pressure. The residue was then purified by silica-gel column chromatography (eluent: hexane/EtOAc, 3:1) to afford **S1d** as white solids (1.43 g, 4.12 mmol, 67%).

m.p. 139.3-140.0 °C; $[\alpha]_D^{19} 106.9$ (*c* 0.89, CHCl₃); IR (neat) $\tilde{\nu}$: 3312, 1734, 1716, 1637 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.29-7.22 (m, 3H), 7.14 (d, *J* = 6.0 Hz, 2H), 6.92 (d, *J* = 15.5 Hz, 1H), 6.80 (d, *J* = 15.5 Hz, 1H), 6.45 (d, *J* = 7.5 Hz, 1H), 4.84 (dt, *J* = 7.0, 6.0 Hz, 1H), 4.22 (q, *J* = 7.5 Hz, 2H), 3.14 (d, *J* = 6.0 Hz, 2H), 1.42 (s, 9H), 1.30 (t, *J* = 7.5 Hz, 3H), ¹³C NMR (125 MHz, CDCl₃) δ : 170.2, 165.5, 163.0, 135.9, 130.9, 129.6, 128.5, 127.2, 82.9, 61.3, 53.9, 37.9, 28.0, 14.2 ppm; HRMS (ESI) *m/z* calcd. for C₁₉H₂₅NO₅ [M+Na]⁺: 370.1625, found: 370.1588.

(S,E)-4-((1-(tert-Butoxy)-1-oxo-3-phenylpropan-2-yl)amino)-4-oxobut-2-enoic acid (1d): To a solution

of **S1d** (1.43 g, 4.12 mmol, 1.0 equiv) in THF (20 mL) and water (8.0 mL) was added LiOH (172.8 mg, 4.12 mmol, 1.0 equiv) and stirred at room temperature for 12 h. The mixture was washed with Et_2O , and the aqueous phase was acidified with 1 M HCl aq. The solution was extracted with

EtOAc (20 mL, 2 times) and the combined organic layer was washed with brine. After drying over Na_2SO_4 followed by filtration, the solvent wasremoved under reduced pressure to afford **1d** as white solids (565.3 mg, 1.77 mmol, 43%).

m.p. 118.7-119.1°C; $[\alpha]_D^{20} 105.8$ (*c* 0.68, CHCl₃); IR (neat) \tilde{v} : 3350, 1726, 1659, 1642cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.29-7.24 (m, 3 H), 7.15-7.14 (m, 2 H), 7.00 (d, *J* = 15.5 Hz, 1H), 6.83 (d, *J* = 7.5 Hz, 1H), 6.82 (d, *J* = 15.0 Hz, 1H), 4.89 (dt, *J* = 8.0, 7.0 Hz, 1H), 3.13 (d, *J* = 6.0 Hz, 2H), 1.42 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 170.9, 169.4, 163.1, 137.6, 135.7, 130.3, 129.6, 128.6, 127.3, 83.4, 54.0, 38.1, 28.0 ppm; HRMS (ESI) *m/z* calcd. for C₁₇H₂₁NO₅ [M+Na]⁺: 342.1312, found: 342.1295.

Ethyl (R,E)-4-((1-(tert-butoxy)-1-oxo-3-phenylpropan-2-yl)amino)-4-oxobut-2-enoate (S1e):

A mixture of D-phenylalanine *t*-butyl ester hydrochloride⁶ (1.32 g, 6.0 mmol, 1.0 equiv), monoethyl fumarate (944.0 mg, 6.6 mmol, 1.1 equiv), HOBt (972.0 mg, 7.2 mmol, 1.2 equiv), Et₃N (1.82 g, 18.0 mmol, 3.0 equiv) and EDCI (1.38 g, 7.2 mmol, 1.2 equiv) in DMF (30 mL) was stirred

at room temperature for 20 h. The solution was diluted with brine (20 mL) and extracted with Et_2O (20 mL, 2 times). The combined organic phase was dried over Na_2SO_4 followed by filtration and concentration under reduced pressure. The residue was then purified by silica-gel column chromatography (eluent: hexane/EtOAc, 3:1) to afford **S1d** as white solids (1.46 g, 4.23 mmol, 70%).

m.p. 135.5-137.8 °C; $[\alpha]_D^{18} - 91.3$ (c 0.94, CHCl₃); IR (neat) \tilde{v} : 3310, 1734, 1716, 1636 cm⁻¹; ¹H NMR (500

MHz, CDCl₃) δ : 7.27-7.22 (m, 3H), 7.15-7.13 (m, 2H), 6.94 (d, J = 15.5 Hz, 1H), 6.81 (d, J = 14.5 Hz, 1H), 6.54 (d, J = 7.5 Hz, 1H), 4.85 (dt, J = 7.5, 6.0 Hz, 1H), 4.21 (q, J = 7.0 Hz, 2H), 3.14 (d, J = 6.0 Hz, 2H), 1.41 (s, 9H), 1.29 (t, J = 7.5 Hz, 3H), ¹³C NMR (125 MHz, CDCl₃) δ : 170.3, 165.5, 163.0, 135.95, 135.91, 130.9, 129.5, 128.5, 127.1, 82.8, 61.3, 53.9, 37.9, 28.0, 14.2 ppm; HRMS (ESI) *m/z* calcd. for C₁₉H₂₅NO₅ [M+Na]⁺: 370.1625, found: 370.1576.

(R,E)-4-((1-(tert-Butoxy)-1-oxo-3-phenylpropan-2-yl)amino)-4-oxobut-2-enoic acid (1e): To a solutionof S1e (1.46 g, 4.23 mmol, 1.0 equiv) in THF (20 mL) and water (8.0 mL)was added LiOH. (177.4 mg, 4.23 mmol, 1.0 equiv) and stirred at roomtemperature for 12 h. The mixture was washed with Et₂O, and the aqueousphase was acidified with 1 M HCl aq. The solution was extracted with

EtOAc (20 mL, 2 times) and the combined organic layer was washed with brine. After drying over Na_2SO_4 followed by filtration, the solvent was removed under reduced pressure to afford **1e** as white solids (855.0 mg, 2.67 mmol, 65 %).

m.p. 118.6-119.2°C; $[\alpha]_D^{21} - 95.0$ (c 0.48, CHCl₃); IR (neat) $\tilde{\nu}$: 3351, 1726, 1660, 1642cm⁻¹; ¹H NMR (500

MHz, CDCl₃) δ : 7.29-7.24 (m, 3 H), 7.14 (d, J = 7.0 Hz, 2 H), 6.99 (d, J = 15.5 Hz, 1H), 6.81 (d, J = 15.0 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 4.88 (dt, J = 8.0, 6.0 Hz, 1H), 3.14 (d, J = 6.5 Hz, 2H), 1.42 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 170.9, 169.4, 163.0, 137.6, 130.2, 129.6, 128.6, 127.3, 83.4, 54.0, 38.0, 28.0 ppm; HRMS (ESI) *m*/*z* calcd. for C₁₇H₂₁NO₅ [M+Na]⁺: 342.1312, found: 342.1291.

Ethyl (*E*)-4-((*tert*-butoxycarbonylmethyl)amino)-4-oxobut-2-enoate (S1f): A mixture of glycine *tert*butyl ester hydrochloride (835.0 mg, 4.98 mmol, 1.0 equiv), monoethyl fumarate (788.4 mg, 5.47 mmol, 1.1 equiv), HOBt (1.01 g, 7.47 mmol, 1.5 equiv), and EDCI (1.43 g, 7.47 mmol, 1.5 equiv) in DMF (13.5 mL) was stirred at room temperature for 20 h. The solution was diluted with brine (30

mL) and extracted with Et_2O (50 mL, 3 times). The combined organic phase was dried over Na_2SO_4 followed by filtration and concentration under reduced pressure. The residue was then purified by silicagel column chromatography (eluent: hexane/EtOAc, 1:1) to afford **S1f** as yellow oil (716.7 mg, 2.78 mmol, 56%).

IR (neat) v: 3301, 2980, 1724, 1668 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 6.94 (d, J = 15.0 Hz, 1H), 6.82 (d, J = 15.0 Hz, 1H), 4.24 (q, J = 7.0 Hz, 2H), 4.03 (d, J = 4.5 Hz, 2H), 1.47 (s, 9H), 1.31 (t, J = 6.5 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 168.6, 165.5, 163.6, 135.5, 131.1, 82.9, 61.3, 42.4, 28.1, 14.2 ppm; HRMS (ESI) m/z calcd. for [M+Na]⁺: 280.1155, found: 280.1157.

(E)-4-((tert-Butoxycarbonylmethyl)amino)-4-oxobut-2-enoic acid (1f): A solution of S1f (716.0 mg,

2.78 mmol, 1 equiv) in THF (14 mL) was treated with 1 M LiOH aq. (2.78 mL, 2.78 mmol, 1.0 equiv) and stirred at ambient temperature for 4 h. The mixture was acidified with 1 M HCl aq. and extracted with $CHCl_3$ (30 mL, 3 times). After drying over Na_2SO_4 followed by filtration, the solvent was

removed under reduce pressure to afford **1f** as white solids (366.7 mg, 1.60 mmol, 60%). m.p. 229.4 °C (decomp.); IR (neat) \tilde{v} : 3339, 2868, 1732, 1689, 1658, 1637 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.02 (d, J = 15.5 Hz, 1H), 6.84 (d, J = 15.5 Hz, 1H), 6.54 (br s, 1H), 4.06 (d, J = 4.5 Hz, 2H), 1.48 (s, 9H) ppm; ¹³C NMR (125 MHz, CD₃OD) δ : 168.6, 166.9, 165.3, 135.6, 130.5, 81.7, 41.6, 26.9 ppm; HRMS (ESI) *m/z* calcd. for [M-H]⁻: 228.0877, found: 228.0868.

Ethyl (*S,E*)-4-((1,3-bis(*tert*-butoxy)-1-oxopropan-2yl)amino)-4-oxobut-2-enoate (S1g): A mixture of O-tert-butyl-L-serine tert-butyl ester hydrochloride (2.53 g, 10.0 mmol, 1.0 equiv), monoethyl fumarate (1.72 g, 12.0 mmol, 1.2 equiv), HOBt (1.62 g, 12.0 mmol, 1.2 equiv), and EDCI (2.87 g, 15.0 mmol, 1.5 equiv) in DMF (27 mL) was stirred at room temperature for 12 h. The solution was diluted with

brine (50 mL) and extracted with Et_2O (50 mL, 3 times). The combined organic phase was dried over Na_2SO_4 followed by filtration and concentration under reduced pressure. The residue was then purified by silica-gel column chromatography (eluent: hexane/EtOAc, 1:1) to afford **S1g** as white solids (3.06 g, 8.91 mmol, 89%).

m.p. 79.4- 80.5 °C; $[\alpha]_D^{25} 43.2$ (*c* 0.45, CHCl₃); IR (neat) \tilde{v} : 3309, 2981, 1741, 1715, 1656 cm⁻¹; ¹H NMR (125

MHz, CDCl₃) δ : 6.99 (d, J = 15.5 Hz, 1H), 6.96 (d, J = 8.5 Hz, 1H), 4.60 (dt, J = 8.0, 3.0 Hz, 1H), 4.13 (q, J = 7.0 Hz, 2H), 3.69 (dd, J = 8.0, 3.0 Hz, 1H), 3.46 (dd, J = 8.0, 3.0 Hz, 1H), 1.35 (s, 9H), 1.18 (t, J = 7.0 Hz, 3H), 1.01 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 169.0, 165.5, 163.2, 136.3, 130.5, 81.9, 73.0, 62.1, 61.1, 53.5, 27.9, 27.2, 14.1 ppm; HRMS (ESI) *m*/*z* calcd. for C₁₇H₂₉NO₆ [M+Na]⁺: 366.1887, found: 366.1861.

(S,E)-4-((1,3-Bis(tert-butoxy)-1-oxopropan-2-yl)amino)-4-oxobut-2-enoic acid (1g): A solution of S1g (1.03 g, 3.0 mmol, 1.0 equiv) in THF (15 mL) was treated with 1 M LiOH aq. (3.0 mL, 3.0 mmol, 1.0 equiv) and stirred at ambient temperature for 4 h. The mixture was acidified with 1 M HCl aq. and extracted with CHCl₃ (20 mL, 3 times). After drying over Na₂SO₄ followed by filtration, the solvent was

removed to afford 1g as white solids (836.9 mg, 2.65 mmol, 88%).

m.p. 165.5-167.9°C; $[\alpha]_D^{23} 25.6$ (*c* 0.42, CHCl₃); IR (neat) \tilde{v} : 3331, 3074, 1720, 1706, 1631 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.19 (d, *J* = 8.5 Hz, 1H), 7.07 (d, *J* = 15.5 Hz, 1H), 6.88 (d, *J* = 15.5 Hz, 1H), 4.73 (dt, *J* = 9.0, 3.0 Hz, 1H), 3.80 (dd, *J* = 9.0, 3.0 Hz, 1H), 3.56 (dd, *J* = 9.0, 3.0 Hz, 1H), 1.45 (s, 9H), 1.12 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 169.7, 168.8, 137.3, 130.5, 82.8, 73.5, 62.2, 53.6, 28.0, 27.3 ppm; HRMS (ESI) *m/z* calcd. for C₁₅H₂₅NO₆[M+Na]⁺: 338.1574, found: 338.1554.

(C-2) Preparation of Nucleophiles

O-benzylhydroxylamine (**2a**) was prepared by neutralization of $BnONH_2$ ·HCl by 4 M NaOH aq. After extraction with CHCl₃, general work up and dried under vacuum to afford **2a**. *O*-Benzoylhydroxylamine (**S2a**) was prepared according to the reported procedure.⁸

O-(4-Methoxybenzyl)hydroxylamine (2b): A mixture of N-hydroxyphthalimide (1.80 g, 11.0 mmol, 1.1

F₃C

2c

equiv), 4-methoxybenzyl chloride (1.86 g, 10.0 mmol, 1.0 equiv), and Et_3N (1.22 g, 12.1 mmol, 1.1 equiv) in CH_2Cl_2 (25 mL) was stirred at room temperature for 4 h. The suspension was washed with brine (20 mL, 3 times) and the combined

organic phase was dried over Na₂SO₄. After the solvent was removed under reduced pressure, the residue was dissolved in CHCl₃/MeOH = 3:1 (50 mL). To the solution was added to N₂H₄·H₂O (750.9 mg, 15.0 mmol, 1.5 equiv) and stirred at room temperature for 2 h. The mixture was filtered through a pad of Celite[®] and the filtrate was concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 1:1) to afford **2b** as colorless oil (1.10 g, 6.2 mmol, 62%). IR (neat) \tilde{v} : 2977, 2917 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.29 (d, *J* = 9.0 Hz, 2H), 6.89 (d, *J* = 9.0 Hz, 2H), 5.33 (br s, 2H), 4.61 (s, 2H), 3.80 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 159.5, 130.1, 129.4, 113.9,113.7, 77.7, 53.3 ppm; HRMS (ESI) *m/z* calcd. for C₈H₉NO, [M]⁺: 176.0682, found: 176.0556.

O-(4-Trifluoromethylbenzyl)hydroxylamine (2c): 2c was prepared through the procedure analogous to that of 2b. Alkylation was performed using *N*-hydroxyphthalimide (1.35 g, 7.0 mmol, 1.4 equiv), 4-(trifluoromethyl)benzyl chloride (815.0 mg, 5.0 mmol, 1.0 equiv), and Et₃N (708.3 mg, 7.0 mmol, 1.4 equiv) in CH_2Cl_2 (20 mL). Deprotection of phthalimide was conducted with N_2H_4 · H_2O (525.6 mg, 10.5 mmol, 1.5 equiv) in $CH_3Cl/MeOH = 3:1$ (15 mL), which afforded **2c** as colorless oil (810.0 mg, 4.2 mmol, 84%).

IR (neat) \tilde{v} : 2940, 1323 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.63 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 5.48 (br s, 2H), 4.75 (s, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 141.7, 130.0 (q, J = 32.5 Hz), 128.3, 125.4 (q, J = 3.9 Hz), 76.9 ppm; HRMS (ESI) *m*/*z* calcd. for C₈H₈FNO, [M+H]⁺: 192.0631, found: 192.0579.

O-(Benzyloxymethyl)hydroxylamine (2d): 2d was prepared through the procedure analogous to that of
 2b. Alkylation was performed using *N*-hydroxyphthalimide (322.6 mg. 2.0 mmol, 1.0 equiv), chloromethyl benzyl ether (439.1 mg, 2.8 mmol, 1.4 equiv), and Et₃N (286.0 mg, 2.8 mmol, 1.4 equiv) in CH₂Cl₂ (4.5 mL). Deprotection of phthalimide

was conducted with N_2H_4 · H_2O (150.2 mg, 3.0 mmol, 1.5 equiv) in CH₃Cl/MeOH = 3:1 (5 mL), which afforded **2d** as colorless oil (213.4 mg, 1.4 mmol, 70%).

IR (neat) \tilde{v} : 2871 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.38-7.34 (m, 4H), 7.32-7.29 (m, 1H), 5.51 (br s, 2H), 4.85 (s, 2H), 4.67 (s, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 137.1, 128.4, 127.7, 98.5, 69.9 ppm; HRMS (ESI) *m/z* calcd. for C₈H₁₂NO₂, [M]⁺: 154.0865, found: 154.0805.

CH₂Cl₂ (11.4 mL). Deprotection of phthalimide was conducted with N₂H₄·H₂O (375.5 mg, 7.5 mmol, 1.5 equiv) in CH₃Cl/MeOH = 3:1 (10 mL), which afforded **2e** as colorless oil (550.5 mg, 3.1 mmol, 62%). IR (neat) \tilde{v} : 2953 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 5.47 (br s, 2H), 4.73 (s, 2H), 3.64 (t, *J* = 8.0 Hz, 2H), 0.96 (t, *J* = 8.0 Hz, 2H), 0.01 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 98.8, 65.7, 18.3 ppm; HRMS (ESI) *m/z* calcd. for C₆H₁₇NO₂Si, [M+H]⁺: 164.1107, found: 164.1018.

*O***-Benzoylhydroxylamine (S2a)**⁷: Colorless oil.

¹H NMR (400 MHz, CDCl₃) δ : 8.00 (d, J = 2.0 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 6.60 (br s, 2H) ppm.

(C-3) General Procedure for Catalytic Aza-Michael Addition

Prior to the reaction, 4 Å MS was dried by heat-gun (>300 °C, 15 min) under vacuum (*ca*. 2 Torr). To an oven-dried 10 mL screw tube were placed an organocatalyst (10 mol%), substrate **1** (1.0 equiv), and benzoic acid (1.0 equiv), which were suspended in CCl₄ (0.2 M) and sealed with a Teflon-coated screw cap. After stirring at room temperature for 10 min, pre-heated 4 Å MS (500 mg/mmol) was added and the tube was capped and further stirred for 5 min. Hydroxylamine **2** (1.1 equiv) was then added and the system was closed again followed by stirring at ambient temperature for the indicated time. After the reaction progress was monitored by ¹H NMR analysis (a small amount of the mixture was transferred into an NMR tube). The reaction mixture was diluted in toluene/MeOH (3:1, 1 mL) and treated with TMSCHN₂ (10% in hexane, 1 mL) and stirred for 30 min. The excess TMSCHN₂ was quenched with AcOH, then the mixture was filtered through Celite[®] and the cake was washed with MeOH. After the solvent was removed under reduced pressure, the residue was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 1:1) to afford the product **3**. The ee of **3** was estimated by chiral HPLC analysis.

1-tert-Butyl 4-methyl N-benzyloxy-D-aspartate (3aa): The reaction was carried out using 1a (34.4 mg,

200 μ mol, 1.0 equiv) and **2a** (27.0 mg, 220 μ mol, 1.1 equiv) in the presence of catalyst **A** (7.9 mg, 20 μ mol, 10 mol%), benzoic acid (24.4 mg, 200 μ mol, 1.0 equiv) and 4 Å MS (100.0 mg) for 24 h. The crude product was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 3:1) afforded **3aa** as colorless oil

(40.5 mg, 164 µmol, 80%, 93% ee).

 $[\alpha]_D^{24} + 5.4$ (c 1.00, CHCl₃); IR (neat) \tilde{v} : 3275, 1731 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 7.31 (m, 5H), 6.18

(br s, 1H), 4.69 (s, 2H), 3.92 (br s, 1H), 3.68 (s, 3H), 2.76 (dd, J = 16.0, 6.4 Hz, 1H), 2.63 (dd, J = 16.0, 6.4 Hz, 1H), 1.47 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 171.3, 170.6, 137.5, 128.3, 128.2 127.7, 76.3, 64.2, 60.1, 51.8, 34.3, 27.9 ppm; HRMS (ESI) *m/z* calcd. for C₁₆H₂₃NO₅, [M+Na]⁺: 332.1468, found: 332.1470. The enantiomeric excess was estimated by chiral HPLC analysis (DAICEL CHIRALPAK IB, eluent: hexane/2-propanol = 99/1, flow rate: 1.0 mL/min. detector: UV at 220 nm), *t*_R = 12.0 min (minor), 10.5 min (major).

1-Benzyl 4-methyl N-benzyloxy-D-aspartate (3ba): The reaction was carried out using 1b (82.4 mg, 400

 μ mol, 1.0 equiv) and **2a** (54.2 mg, 440 μ mol, 1.1 equiv) in the presence of catalyst **A** (15.9 mg, 40 μ mol, 10 mol%), benzoic acid (48.8 mg, 400 μ mol, 1.0 equiv) and 4 Å MS (200.0 mg) for 24 h. The crude product was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 2:1) afforded **3ba** as colorless oil (69.6 mg,

201 µmol, 50%, 91% ee).

 $[\alpha]_D^{26} + 4.2$ (c 0.94, CHCl₃); IR (neat) \tilde{v} : 1738 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.34 (m, 10H), 6.26 (br

s, 1H), 5.23 (d, J = 12.0 Hz, 1H), 5.19 (d, J = 12.0 Hz, 1H), 4.71 (d, J = 12.0 Hz, 1H), 4.68 (d, J = 12.0 Hz, 1H), 4.09 (t, J = 7.0 Hz, 1H), 3.64 (s, 3H), 2.85 (dd, J = 16.0, 6.0 Hz, 1H), 2.70 (dd, J = 16.0, 6.0 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 171.5, 171.2, 137.4, 135.4, 128.68, 128.60, 128.4, 128.3, 128.0, 76.6, 67.2, 60.2, 52.0, 34.2 ppm; HRMS (ESI) *m/z* calcd. for C₁₉H₂₁NO₅, [M+Na]⁺: 366.1312, found: 366.1290. The enantiomeric excess was estimated by chiral HPLC analysis (DAICEL CHIRALPAK IB, eluent: hexane/2-propanol = 98/2, flow rate: 1.0 mL/min. detector: UV at 254 nm), $t_R = 16.1$ min (major), 17.4 min (minor).

1-Ethyl 4-methyl N-benzyloxy-D-aspartate (3ca): The reaction was carried out using 1c (57.6 mg, 400

 μ mol, 1.0 equiv) and **2a** (54.2 mg, 440 μ mol, 1.1 equiv) in the presence of catalyst **A** (15.9 mg, 40 μ mol, 10 mol%), benzoic acid (48.8 mg, 400 μ mol, 1.0 equiv) and 4 Å MS (200.0 mg) for 24 h. The crude product was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 2:1) afforded **3ca** as colorless oil (55.2 mg,

197.6 µmol, 49%, 94% ee).

 $[\alpha]_D^{26} 6.1$ (*c* 1.04, CHCl₃); IR (neat) \tilde{v} : 3265, 1732 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 7.31 (m, 5H), 6.22 (br s, 1H), 4.69 (s, 2H), 4.23 (q, *J* = 6.8 Hz, 2H), 4.01 (t, *J* = 6.4 Hz, 1H), 3.68 (s, 3H), 2.81 (dd, *J* = 16.4, 6.4 Hz, 1H), 1.28 (t, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 171.5, 171.2, 137.4, 128.4, 128.3, 127.8, 76.5, 61.4, 60.0, 51.9, 34.1, 14.0 ppm; HRMS (ESI) *m/z* calcd. for C₁₄H₁₉NO₅, [M+Na]⁺: 304.1155, found: 304.1140. The enantiomeric excess was estimated by chiral HPLC analysis (DAICEL CHIRALPAK @, eluent: hexane/2-propanol = 99/1, flow rate: 1.0 mL/min. detector: UV at 254 nm), *t*_R = 16.9 min (major), 20.1 min (minor).

Methyl (R)-3-((benzyloxy)amino)-4-(((S)-1-(tert-butoxy)-1-oxo-3-phenylpropan-2-yl)amino)-4-

oxobutanoate (3da): The reaction was carried out using 1d (133.2 mg, 400 μ mol, 1.0 equiv) and 2a (54.2 mg, 440 μ mol, 1.1 equiv) in the presence of catalyst A (15.9 mg, 40 μ mol, 10 mol%), benzoic acid (48.8 mg, 400 μ mol, 1.0 equiv) and and 4 Å MS (200.0 mg) for 24 h. The crude

product was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 2:1) afforded **3da** as colorless oil (120.0 mg, 263 µmol, 66%, 67:33 dr).

For major diastereomer: $[\alpha]_D^{21} 39.8$ (*c* 0.51, CHCl₃); IR (neat) \tilde{v} : 3381, 1730, 1675 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.34-7.14 (m, 10H), 6.19 (d, *J* = 5.5 Hz, 1H), 4.73 (dt, *J* = 7.5, 6.0 Hz, 1H), 4.68 (d, *J* = 12.0 Hz, 1H), 4.61 (d, *J* = 12.0 Hz, 1H), 3.81 (m, 1H), 3.66 (s, 3H), 3.11 (dd, *J* = 15.0, 6.0 Hz, 1H), 3.07 (dd, *J* = 15.0, 6.0 Hz, 1H), 2.87 (dd, *J* = 17.5, 9.0 Hz, 1H), 2.77 (dd, *J* = 17.0, 9.0 Hz, 1H), 1.40 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 172.5, 170.4, 170.2, 137.2, 136.3, 129.6, 128.57, 128.52, 128.4, 128.1, 127.0, 82.4, 76.3, 60.5, 53.6, 52.0, 38.2, 32.2, 28.0 ppm; HRMS (ESI) *m/z* calcd. for C₂₅H₃₂N₂O₆, [M+H]⁺: 457.2333, found: 457.2353.

For minor diastereomer: $[\alpha]_D^{21} 19.7$ (*c* 0.60, CHCl₃); IR (neat) \tilde{v} : 3388, 1732, 1674 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.33-7.17 (m, 10H), 6.18 (d, *J* = 6.0 Hz, 1H), 4.73 (dt, *J* = 7.5, 6.0 Hz, 1H), 4.62 (d, *J* =

11.5 Hz, 1H), 4.59 (d, J = 11.5 Hz, 1H),3.82 (ddd, J = 8.0, 7.0, 4.5 Hz, 1H), 3.65 (s, 3H), 3.11 (dd, J = 14.0, 6.5 Hz, 1H), 3.08 (dd, J = 14.0, 6.0 Hz, 1H), 2.83 (dd, J = 12.0, 4.5 Hz, 1H), 2.71 (dd, J = 12.0, 8.0 Hz, 1H), 1.44 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 172.3, 170.47, 170.42, 137.1, 136.2, 129.7, 128.4, 128.1, 127.0, 82.4, 76.2, 60.6, 53.6, 52.0, 38.1, 32.5, 28.0 ppm; HRMS (ESI) *m/z* calcd. for C₂₅H₃₂N₂O₆, [M+H]⁺: 457.2333, found: 457.2354.

Methyl (*R*)-3-((benzyloxy)amino)-4-(((*R*)-1-(*tert*-butoxy)-1-oxo-3phenylpropan-2-yl)amino)-4-oxobutanoate (3ea): The reaction was carried out using 1e (133.2 mg, 400 μ mol, 1.0 equiv) and 2a (54.2 mg, 440 μ mol, 1.1 equiv) in the presence of catalyst A (15.9 mg, 40 μ mol, 10 mol%), benzoic acid (48.8 mg, 400 μ mol, 1.0 equiv) and 4 Å MS (200.0

mg) for 24 h. The crude product was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 2:1) afforded **3ea** as colorless oil (128.2 mg, 280 μmol, 70%, 75:25 dr).

For major diastereomer: $[\alpha]_D^{21} - 15.0$ (c 0.66, CHCl₃); IR (neat) \tilde{v} : 3381, 1731, 1674 cm⁻¹; ¹H NMR (500

MHz, CDCl₃) δ : 7.34-7.16 (m, 10H), 6.19 (br s, 1H), 4.73 (dt, J = 7.5, 6.0 Hz, 1H), 4.61 (d, J = 11.5 Hz, 1H), 4.59 (d, J = 11.5 Hz, 1H), 3.82 (m, 1H), 3.66 (s, 3H), 3.11 (dd, J = 14.0, 6.5 Hz, 1H), 3.08 (dd, J = 14.0, 6.5 Hz, 1H), 2.83 (dd, J = 12.0, 4.5 Hz, 1H), 2.71 (dd, J = 17.0, 8.0 Hz, 1H), 1.41 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 172.3, 170.47, 170.42, 137.1, 136.2, 129.7, 128.5, 128.4, 128.1, 127.0, 82.4, 76.2, 60.6, 53.6, 52.0, 38.1, 32.5, 28.0 ppm; HRMS (ESI) *m/z* calcd. for C₂₅H₃₂N₂O₆, [M+H]⁺: 457.2333, found: 457.2328.

For minor diastereomer: $[\alpha]_D^{22} - 43.9$ (*c* 0.57, CHCl₃); IR (neat) \tilde{v} : 3383, 1729, 1674 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.32-7.14 (m, 10H), 6.19 (d, *J* = 6.0 Hz, 1H), 4.74 (dt, *J* = 7.5, 6.5 Hz, 1H), 4.65 (d, *J* = 11.5 Hz, 1H), 4.59 (d, *J* = 11.5 Hz, 1H), 3.81 (m, 1H), 3.66 (s, 3H), 3.12 (dd, *J* = 14.0, 6.0 Hz, 1H), 3.07 (dd, *J* = 14.0, 6.0 Hz, 1H), 2.87 (dd, *J* = 17.0, 5.0 Hz, 1H), 2.77 (dd, *J* = 17.5, 8.0 Hz, 1H), 1.40 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 172.5, 170.4, 170.2, 137.1, 136.3, 129.5, 128.5, 128.49, 128.46, 128.0, 127.0, 82.3, 76.2, 60.4, 53.6, 51.9, 38.1, 32.2, 28.0 ppm; HRMS (ESI) *m/z* calcd. for C₂₅H₃₂N₂O₆, [M+H]⁺: 457.2333, found: 457.2355.

Methvl

(S)-3-((benzyloxy)amino)-4-((tert-

butoxycarbonylmethyl)amino)-4-oxobutanoate (3fa): The reaction was carried out using **1f** (91.6 mg, 400 µmol, 1.0 equiv) and **2a** (54.2 mg, 440 µmol, 1.1 equiv) in the presence of catalyst **ent-A** (15.9 mg, 40 µmol, 10

mol%), benzoic acid (48.8 mg, 400 μ mol, 1.0 equiv) and 4 Å MS (200.0 mg) for 24 h. The crude product was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 2:1) afforded **3fa** as colorless oil (241.4 mg, 266 μ mol, 66%, 63% ee).

 $[\alpha]_D^{24}$ 4.6 (*c* 1.46, CHCl₃); IR (neat) $\tilde{\nu}$: 1733, 1669 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.34-7.28 (m, 4H), 7.19 (m, 1H), 6.46 (br s, 1H), 4.73 (s, 2H), 4.03 (d, *J* = 5.5 Hz, 1H), 3.88 (dd, *J* = 5.0, 2.0 Hz, 1H), 3.85 (dd, *J* = 5.0, 2.0 Hz, 1H), 3.66 (s, 3H), 2.89 (dd, *J* = 17.0, 8.0 Hz), 2.78 (dd, *J* = 17.0, 8.0 Hz), 1.46 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 172.5, 170.8, 168.7, 130.6, 128.7, 128.5, 128.1, 82.3, 76.2, 60.4, 52.0, 42.0, 32.3, 28.1 ppm; HRMS (ESI) *m/z* calcd. for C₁₈H₂₆N₂O₆, [M+H]⁺: 367.1864, found: 367.1789. The enantiomeric excess was estimated by chiral HPLC analysis (DAICEL CHIRALPAK IB, eluent: hexane/2-propanol = 96/4, flow rate: 1.0 mL/min. detector: UV at 254 nm), *t*_R = 29.6 min (major), 27.7 min (minor).

Methyl

(R)-3-((benzyloxy)amino)-4-(((S)-1,3-di-tert-butoxy-1-oxopropan-2-yl)amino)-4-oxobutanoate (3ga): The reaction was carried out using 1g (126 mg, 400 CO_2Me μ mol, 1.0 equiv) and 2a (54.2 mg, 440 μ mol, 1.1 equiv) in the presence ofcatalyst ent-A (15.9 mg, 40 μ mol, 10 mol%), benzoic acid (48.8 mg, 400 μ mol, 1.0 equiv) and 4 Å MS (200.0 mg) for 24 h. The crude product was

purified by silica-gel column chromatography (eluent: hexane/EtOAc, 2:1) afforded **3da** as colorless oil (366.6 mg, 322 µmol, 81%, 73:27 dr).

For major diastereomer: $[\alpha]_D^{21} 33.2$ (c 1.02, CHCl₃); IR (neat) \tilde{v} : 3403, 1735, 1679 cm⁻¹; ¹H NMR (500

MHz, CDCl₃) δ : 7.66 (d, J = 8.0 Hz, 1H), 7.37-7.31 (m, 5H), 6.26 (d, J = 10.0 Hz, 1H), 4.80 (dd, J = 15.0, 11.5 Hz, 2H), 4.60 (dt, J = 9.0, 2.5 Hz, 1H), 3.90 (dt, J = 7.5, 4.5 Hz, 1H), 3.81 (dd, J = 17.0, 4.5 Hz, 1H), 3.67 (s, 3H), 3.54 (dd, J = 8.5, 3.0 Hz, 1H), 2.91 (dd, J = 17.0, 4.5 Hz, 1H), 2.76 (dd, J = 17.0, 9.0 Hz, 1H), 1.47 (s, 9H), 1.13 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 172.4, 170.5, 169.2, 137.3, 128.6, 128.5, 128.0, 81.8, 76.4, 73.1, 60.7, 53.2, 52.0, 32.6, 28.1, 27.4 ppm; HRMS (ESI) *m/z* calcd. for C₂₅H₃₂N₂O₆, [M+H]⁺: 453.2595, found: 453.2570.

For minor diastereomer: $[a]_D^{21} 1.0$ (c 0.96, CHCl₃); IR (neat) $\tilde{\nu}$: 3405, 1737, 1679 cm⁻¹; ¹H NMR (500 MHz,

CDCl₃) δ : 7.61 (d, J = 8.5 Hz, 1H), 7.34-7.26 (m, 5H), 6.26 (d, J = 6.5 Hz, 1H), 4.78 (dd, J = 17.0, 11.0 Hz, 2H), 4.61 (dt, J = 8.5, 2.5 Hz, 1H), 3.91 (ddd, J = 9.0, 6.5, 3.0 Hz, 1H), 3.81 (dd, J = 9.0, 3.0 Hz, 1H), 3.67 (s, 3H), 3.54 (dd, J = 9.0, 3.0 Hz, 1H), 2.93 (dd, J = 17.5, 5.0 Hz, 1H), 2.80 (dd, J = 17.5, 9.0 Hz, 1H), 1.47 (s, 9H), 1.12 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 172.4, 170.5, 169.3, 137.3, 128.58, 128.51, 128.0, 81.9, 76.4, 73.1, 62.2, 60.5, 53.2, 51.9, 32.3, 28.1, 27.4 ppm; HRMS (ESI) *m/z* calcd. for C₂₅H₃₂N₂O₆, [M+H]⁺: 453.2595, found: 453.2524.

1-tert-Butyl 4-methyl *N*-(4-methoxybenzyl)oxy-D-aspartate (3ab): The reaction was carried out using $MeO_{NH}_{\bar{L}} CO_2Me_{\bar{L}}$ **1a** (68.8 mg, 400 µmol, 1.0 equiv) and **2b** (67.4 mg, 440 µmol, 1.1 equiv) in the presence of catalyst **A** (15.9 mg, 40 µmol, 10 mol%), benzoic acid (48.8 mg, 400 µmol, 1.0 equiv) and 4 Å MS (200.0 mg) for 24 h. The crude product was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 2:1) afforded **3ab** as colorless oil (101.8 mg, 300 µmol,

75%, 89% ee).

 $[\alpha]_D^{23} 8.2$ (*c* 0.68, CHCl₃); IR (neat) \tilde{v} : 1732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.26 (t, *J* = 7.0 Hz, 2H), 6.86 (d, *J* = 7.0 Hz, 2H), 6.12 (br s, 1H), 4.61 (s, 2H), 3.80 (s, 3H), 3.68 (s, 3H), 2.75 (dd, *J* = 16.0, 7.5 Hz, 1H), 2.62 (dd, *J* = 16.0, 7.5 Hz, 1H), 1.46 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 171.4, 170.7, 159.4,

130.1, 129.7, 113.7, 82.1, 76.1, 60.7, 55.3, 51.9, 34.4, 28.0 ppm; HRMS (ESI) m/z calcd. for C₁₇H₂₅NO₆, [M+H]⁺: 340.1755, found: 340.1744. The enantiomeric excess was estimated by chiral HPLC analysis (DAICEL CHIRALPAK IB, eluent: hexane/2-propanol = 98/2, flow rate: 1.0 mL/min. detector: UV at 254 nm), $t_{\rm R} = 13.3$ min (major), 14.1 min (minor).

1-tert-Butyl 4-methyl N-(4-trifluoromethyl)benzyloxy-D-aspartate (3ac): The reaction was carried out F₃C `NH CO₂Me ^tBuO₂C 3ac

using 1a (34.4 mg, 200 µmol, 1.0 equiv) and 2c (42.0 mg, 220 µmol, 1.1 equiv) in the presence of catalyst A (7.9 mg, 20 µmol, 10 mol%) and benzoic acid (48.8 mg, 400 µmol, 1.0 equiv) and 4 Å MS (200.0 mg) for 24 h. The crude product was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 3:1) afforded 3ac as colorless oil

(48.2 mg, 128 µmol, 64%, 96% ee).

 $[\alpha]_D^{25} 6.6$ (c 1.90, CHCl₃); IR (neat) \tilde{v} : 1732, 1324 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 7.60 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 6.25 (d, J = 6.0 Hz, 1H), 4.75 (s, 2H), 3.93 (dt, J = 6.0 Hz, 1H), 3.67 (s, 3H), 2.75 (dd, J = 16.0, 6.5 Hz, 1H), 2.61 (dd, J = 16.0, 6.5 Hz, 1H), 1.48 (s, 9H) ppm; ¹³C NMR (125 MHz, $CDCl_3$) δ : 171.1, 170.5, 141.7, 129.9 (q, J = 32.6 Hz), 128.2, 125.2 (q, J = 3.7 Hz), 124.1 (q, J = 270 Hz), 82.2, 75.4, 60.7, 51.8, 51.7, 34.2, 27.9 ppm; HRMS (ESI) *m/z* calcd. for C₁₇H₂₂NO₅F₃, [M+Na]⁺: 400.1342, found: 400.1333. The enantiomeric excess was estimated by chiral HPLC analysis (DAICEL CHIRALPAK IB, eluent: hexane/2-propanol = 99/1, flow rate: 1.0 mL/min. detector: UV at 254 nm), $t_{\rm R}$ = 15.8 min (minor), 20.2 min (major).

1-tert-Butyl 4-methyl N-(benzyloxy)methoxy-D-aspartate (3ad): The reaction was carried out using 1a

(34.4 mg, 200 µmol, 1.0 equiv) and 2d (36.7 mg, 220 µmol, 1.1 equiv) in the presence of catalyst A (7.9 mg, 20 µmol, 10 mol%) and benzoic acid (48.8 mg, 400 µmol, 1.0 equiv) and 4 Å MS (200.0 mg) for 24 h. The crude product was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 3:1)

afforded **3ad** as colorless oil (40.0 mg, 122 µmol, 60%, 87% ee).

 $[\alpha]_D^{25}$ 4.4 (c 1.06, CHCl₃); IR (neat) \tilde{v} : 1731 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 7.31 (m, 5H), 6.43 (d, J =

6.4 Hz, 1H), 4.86 (s, 2H), 4.65 (s, 2H), 3.98 (dt, J = 10.0, 6.4 Hz, 1H), 3.69 (s, 3H), 2.77 (dd, J = 16.4, 6.4Hz, 1H), 2.67 (dd, J = 16.4, 6.4 Hz, 1H), 1.48 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 171.2, 170.6, 137.7, 128.4, 127.79, 127.67, 82.1, 69.9, 60.8, 51.8, 34.4, 27.9 ppm; HRMS (ESI) *m/z* calcd. for C₁₇H₂₅NO₆, [M+Na]⁺: 362.1574, found: 362.1588. The enantiomeric excess was estimated by chiral HPLC analysis (DAICEL CHIRALPAK IB, eluent: hexane/2-propanol = 98/2, flow rate: 1.0 mL/min. detector: UV at 220 nm), $t_{\rm R} = 16.1 \text{ min (major)}, 17.4 \text{ min (minor)}.$

1-tert-Butyl 4-methyl N-(2-trimethylsilylethoxy)methoxy-D-aspartate (3ae): The reaction was carried out using 1a (34.4 mg, 200 µmol, 1.0 equiv) and 2e (33.6 mg, 220 µmol, 0_0_NH Me₃Si² 1.1 equiv) in the presence of catalyst A (7.9 mg, 20 µmol, 10 mol%), CO₂Me ^tBuO₂C² benzoic acid (48.8 mg, 400 µmol, 1.0 equiv) and 4 Å MS (200.0 mg) 3ae

for 24 h. The crude product was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 3:1) afforded **3ae** as colorless oil (48.9 mg, 142 μ mol, 70%). Since **3ae** was not detectable on HPLC, *N*-benzoylation was conducted to estimate the ee of **3ae**.

 $[a]_D^{25} + 4.3$ (*c* 1.00, CHCl₃); IR (neat) \tilde{v} : 1738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ : 6.36 (d, *J* = 6.4 Hz, 1H), 4.75 (s, 2H), 3.94 (dt, *J* = 12.8 Hz, 6.4 Hz), 3.68 (s, 3H), 3.62 (t, *J* = 8.4 Hz, 2H), 1.45 (s, 9H), 0.94 (t, *J* = 8.4 Hz, 2H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 171.2, 170.6, 97.7, 82.0, 65.7, 60.8, 51.8, 34.4, 27.9, 18.1 ppm; HRMS (ESI) *m/z* calcd. for C₁₅H₃₁NO₆Si, [M+Na]⁺: 372.1813, found: 372.1820.

1-tert-Butyl4-methylN-benzoyl-N-(2-trimethylsilylethoxy)methoxy-D-aspartate (3ae'):To a solution of3ae (34.9 mg, 100 μmol, 1.0 equiv) in EtOAc (1mL) were added BzCl(21.1 mg, 150 μmol, 1.5 equiv) and sat. NaHCO3 aq. (1 mL) at 0 °C.The mixture was allowed to warm to room temperature and stirred for

3 h. Added brine (2 mL) and extracted with EtOAc (5 mL, 2 times).

The crude product was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 5:1) afforded **3ae'** as colorless oil (38.8 mg, 85 µmol, 85%).

 $[\alpha]_D^{25} 0.71$ (c 5.84, CHCl₃); IR (neat) \tilde{v} : 1736, 1648 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.67 (d, J = 7.0 Hz,

2H), 7.46 (t, J = 7.0 Hz, 1H), 7.41 (t, J = 7.0 Hz, 2H) 5.06 (br, 1H), 4.85 (br, 2H), 3.73 (s, 3H), 3.49 (s, 2H), 3.21 (dd, J = 17.0, 7.0 Hz, 1H), 2.97 (dd, J = 17.0, 7.0 Hz, 1H), 1.48 (s, 9H), 0.85 (t, J = 8.0 Hz, 2H), 0.018 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 198.7, 171.3, 167.6, 134.2, 130.9, 128.3, 128.2, 99.6, 82.9, 67.7, 61.1, 52.0, 34.0, 27.9, 17.9 ppm; HRMS (ESI) *m/z* calcd. for C₂₂H₃₅NO₇Si, [M+H]⁺: 453.2111, found: 453.2183. The enantiomeric excess was estimated by chiral HPLC analysis (DAICEL CHIRALPAK IB, eluent: hexane/2-propanol = 1, flow rate: 1.0 mL/min. detector: UV at 254 nm), $t_R = 18.9$ min (major), 23.7 min (minor).

1-Benzyl 4-methyl N-(2-trimethylsilylethoxy)methoxy-L-aspartate (3be): The reaction was carried out

using **1b** (82.5 mg, 400 μ mol, 1.0 equiv) and **2e** (67.3 mg, 440 μ mol, 1.1 equiv) in the presence of catalyst **ent-A** (15.9 mg, 40 μ mol, 10 mol%), benzoic acid (48.8 mg, 400 μ mol, 1.0 equiv) and 4 Å MS (200.0 mg) for 24 h. The crude product was purified by silica-gel column

chromatography (eluent: hexane/EtOAc, 3:1) afforded **3be** as colorless oil (268.4 mg, 284 µmol, 70%, 86% ee).

 $[\alpha]_D^{26} + 4.7$ (c 1.00, CHCl₃); IR (neat) \tilde{v} : 1739 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.35 (m, 5H), 6.42 (d J

= 7.0 Hz, 1H), 5.21 (s, 2H), 4.76 (s, 2H), 4.12 (dt, J = 7.0, 6.0Hz, 1H), 3.65 (s, 3H), 3.62 (dt, J = 8.5, 1.0 Hz, 1H), 2.85 (dd, J = 16.0, 6.0Hz, 1H) 2.74 (dd, J = 16.0, 6.0 Hz, 1H), 0.94 (dt, J = 8.5, 1.2 Hz, 2H), 0.01 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 171.4, 170.9, 135.2, 128.5, 128.3, 128.2, 97.8, 67.1, 65.8, 60.2, 51.9, 34.1, 18.0 ppm; HRMS (ESI) *m/z* calcd. for C₁₈H₂₉NO₆Si, [M+Na]⁺: 406.1656, found: 406.1643.

The enantiomeric excess was estimated by chiral HPLC analysis (DAICEL CHIRALPAK IB, eluent: hexane/2-propanol = 99/1, flow rate: 1.0 mL/min. detector: UV at 254 nm), t_R = 16.4 min (major), 18.2 min (minor).

1-tert-Butyl 4-methyl 9H-fluoren-9-ylmethoxycarbonyl-D-aspartate (S3aa): 3aa (25.3 mg 100 µmol,

1.0 equiv) was dissolved in MeOH (30 mL) and added to 10% Pd/C (80 mg) under an atmosphere of argon. The reaction was carefully flushed with hydrogen gas and stirred at room temperature for 5 h. The atmosphere was replaced with argon before

filtration through a pad of Celite^{®□}. The filtrate was concentrated under reduced pressure and the residue was dissolved in CH₂Cl₂(1.0 mL). To the solution were added ^{*i*}Pr₂NEt (64.6 mg, 500 µmol, 5.0 equiv) and FmocCl (25.8 mg, 120 µmol, 1.2 equiv). The resulting mixture was stirred at ambient temperature for 17 h, then the solvent was evaporated. The residue was purified by silica-gel column chromatography (eluent: hexane/EtOAc, 1:1) to afford **S3aa** as colorless oil (26.0 mg, 61 µmol, 61%).

 $[\alpha]_D^{23} - 7.1$ (c 0.73, CHCl₃); IR (neat) \tilde{v} : 3368, 1721 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.75 (d, J = 7.5 Hz,

2H), 7.60 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 5.80 (d, J = 8.5 Hz, 1H), 4.54 (dt, J = 8.5, 4.5 Hz, 1H), 4.38 (dt, J = 17.0, 7.0 Hz, 2H), 4.23 (t, J = 7.0 Hz, 1H), 3.71 (s, 3H), 3.00 (dd, J = 17.0, 4.0 Hz, 1H), 2.84 (dd, J = 17.0, 4.0 Hz, 1H), 1.48 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 171.3, 169.6, 156.0, 143.9, 143.8, 141.3, 127.8, 127.1, 125.2, 120.0, 82.7, 67.2, 52.0, 51.0, 47.2, 36.8, 27.9 ppm; HRMS (ESI) *m/z* calcd. for 448.1731, [M+Na]⁺ found: 448.1757. The enantiomeric excess was estimated by chiral HPLC analysis (DAICEL CHIRALPAK IA, eluent: hexane/2-propanol = 96/4, flow rate: 1.0 mL/min. detector: UV at 254 nm), $t_{\rm R} = 20.3$ min (major), 26.6 min (minor).

(D) O-Deprotection and KAHA Ligation

1-Benzyl 4-methyl *N***-hydroxy-L-aspartate (4b)**: To a solution of **3be** (192.7 mg, 500 μ mol, 1.0 equiv) in CH₂Cl₂ (5 mL) was added TFA (172.5 mg, 1.5 mmol, 3.0 equiv) at room temperature and stirred for 1 h. H₂O (5 mL) was added and further stirred at ambient temperature for 1 h, and the mixture was dried over Na₂SO₄. The solids were filtered off and the solvent was removed under reduced presssure. The residue

was then purified by silica-gel column chromatography (eluent: hexane/EtOAc, 1:2) to afford **4b** as colorless oil (53.1 mg, 210 μ mol, 42%). Since **4b** was gradually degraded on standing, **4b** was used for KAHA ligation soon after purification.

¹H NMR (500 MHz, CDCl₃) δ : 7.32 (m, 5H), 5.22 (s, 2H), 4.06 (dt, J = 8.0, 5.0 Hz, 1H), 3.66 (s, 3H), 2.87 (dd, J = 16.0, 5.0 Hz, 1H), 2.80 (dd, J = 16.0, 5.0 Hz, 1H) ppm.

1-Benzyl 4-methyl (3-phenylpropanoyl)-L-aspartate (6b): A mixture of **4b** (23.3 mg, 92 μ mol, 1.0 equiv) and 2-oxo-4-phenylbutanoic acid (**5**) (16.3 mg, 92 μ mol, 1.0 equiv) in DMSO/H₂O (9:1, 200 μ L) was stirred at 40 °C for 24 h. The crude mixture was extracted with EtOAc (2 mL, 3 times) and then purified by silica-gel column chromatography (eluent: hexane/EtOAc, 1:2) to afford to **6b** as yellow oil (26.1

mg, 70 µmol, 60%, 82% ee).

 $[\alpha]_D^{24} - 13.2$ (c 1.75, CHCl₃); IR (neat) \tilde{v} : 3311, 1732, 1652 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.38-7.30

(m, 6H), 7.27-7.24 (m, 1H), 7.19-7.17 (m, 3H), 6.42 (d, J = 8.0 Hz, 1H), 5.17 (dd, J = 28.0, 12.5 Hz, 2H), 4.88 (dt, J = 8.0, 4.0 Hz, 1H), 3.00 (dd, J = 17.5, 4.0 Hz, 1H), 2.95 (t, J = 8.0 Hz, 2H), 2.75 (dd, J = 17.5, 4.0 Hz, 1H), 2.59 (ddd, J = 18.0, 15.0, 8.0 Hz, 1H), 2.49 (ddd, J = 18.0 Hz, 15.0, 8.0 Hz) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 171.8, 171.4, 170.5, 140.5, 135.1, 128.55, 128.45, 128.26, 126.1, 67.5, 51.9, 48.3, 38.0, 36.0, 31.4 ppm; HRMS (ESI) *m/z* calcd. For C₂₁H₂₃NO₅, [M+H]⁺: 370.1649, found: 370.1676. The enantiomeric excess was estimated by chiral HPLC analysis (DAICEL CHIRALPAK IB, eluent: hexane/2-propanol = 99/1, flow rate: 1 mL/min. detector: UV at 254 nm), $t_R = 18.2$ min (minor), 16.4 min (major).

1-Benzyl 4-methyl 9H-fluoren-9-ylmethoxycarbonyl-L-leucyl-L-aspartate (8b): A mixture of 4b (60.1

mg, 156 μ mol, 1.0 equiv) and (*S*)-3-(9*H*-fluoren-9ylmethoxycarbonyl)amino)-5-methyl-2-oxohexanoic acid (7) (57.1 mg, 150 μ mol, 1.0 equiv) in DMSO/H₂O (9:1, 15 mL) was stirred at 40 °C for 15 h. The crude mixture was extracted with EtOAc (2 mL, 3 times) and then purified by silica-gel column chromatography (eluent: hexane/EtOAc, 1:2) to

afford to **8b** as yellow oil (41.2 mg, 72 µmol, 50%, 93:7 dr).

 $[\alpha]_D^{23} - 3.20$ (*c* 1.20, CHCl₃); IR (neat) $\tilde{\nu}$: 3314, 1738, 1661 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ : 7.75 (d, *J* = 7.0 Hz, 2H), 7.57 (d, *J* = 5.5 Hz, 2H), 7.39-7.29 (m, 9H), 6.95 (d, *J* = 8.0 Hz, 1H), 5.34 (d, *J* = 8.0 Hz, 1H), 5.15 (dd, *J* = 21.0, 12.0 Hz, 2H), 4.91 (t, *J* = 4.0 Hz, 1H), 4.36 (m, 2H) 4.21 (m, 2H), 3.58 (s, 3H), 3.05 (dd, *J* = 17.0, 3.5 Hz, 1H), 2.81 (dd, *J* = 17.0, 3.5 Hz, 1H), 1.63 (m, 2H), 1.50 (m, 1H), 0.89 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ : 172.2, 171.5, 170.3, 156.1, 143.9, 143.8, 141.3, 135.1, 128.69, 128.60, 128.4, 127.8, 127.1, 125.1, 120.0, 67.7, 67.1, 53.4, 52.1, 48.5, 41.9, 36.0, 24.6, 22.9, 22.0 ppm; HRMS (ESI) *m/z* calcd. For C₃₃H₃₆N₂O₇, [M+Na]⁺: 595.2415, found: 595.2396.

(E) References

[1] N. Hayama, T. Azuma, Y. Kobayashi, Y. Takemoto, Chem. Pharm. Bull., 2016, 64, 704.

[2] S. E. Denmark, A. Thorarensen, D. S. Middleton, J. Am. Chem. Soc., 1996, 118, 8266.

[3] D. Hadjipavlou-Litina, G. E. Magoulas, M. Krokidis, D. Papaioannou, *Eur. J. Med. Chem.*, 2010, 45, 298.

[4] J. P. D. van Veldhoven, C. C. Blad, A. C. Klopman, D. R. Wolfram, M. J. Abdelkadir, J. R. Lane, J. Brussee, A. P. IJzerman, *Bioorg. Med. Chem. Lett.*, 2011, **21**, 2736.

[5] Ö. D. Ekici, Z. Z. Li, A. J. Campbell, K. E. James, J. L. Asgian, J. Mikolajczyk, G. S. Salvesen, R. Ganesan, S. Jelakovic, M. G. Grütter, J. C. Powers, *J. Med. Chem.*, 2006, **49**, 5728.

[6] A. Odriozola, M. Oiarbide, C. Palomo, Chem. Eur. J., 2017, 23, 12758.

[7] L. A. Carpino, C. A. Giza, B. A. Carpino, J. Am. Chem. Soc., 1959, 81, 955.

(F) ¹H NMR and ¹³C NMR Spectra

(G) HPLC Traces

1 PDA Multi 1 / 254nm 4nm <Peak Report>

peak table C:¥data_131217¥murakami¥HM0025-IB004.lcd

PDA Ch1 254nm 4nm						
peak#	retention time (min)	area	area (%)			
1	10 <u>.</u> 110	28220	50.566			
2	11.563	27589	49.434			

```
\langle Chromatogram \rangle
```


1 PDA Multi 1 / 254nm 4nm <Peak Report>

peak table C:¥data_131217¥murakami¥HM0033-C-IA.lcd

PDA Ch1 254nm 4nm				
	peak#	retention time (min)	area	area (%)
	1	20.340	11004240	50.134
	2	26.606	10945554	49.866

$\langle Chromatogram \rangle$

1 PDA Multi 1 / 254nm 4 <Peak Report>

peak table C:¥data_131217¥murakami¥HM0121-2-C-IB001.lcd

PDA Ch1 254nm 4nm				
peak#	retention time (min)	area	area (%)	
1	15.920	300238	50.167	
2	17.012	298243	49.833	

peak table C:¥data_131217¥murakami¥HM0125-C-IB001.lcd

		peak table 0.+ua	a_ioizi/+inular	
P	DA Ch1 254nm	4nm		
	peak#	retention time (min)	area	area (%)
	1	16.175	249368	95.468
	2	17.454	11837	4.532

 $\langle Chromatogram \rangle$

1 PDA Multi 1 / 254nm 4nm

<Peak Report>

peak table C:¥data_131217¥murakami¥HM0051−C−IB001.lcd

	pour cubic off de		
PDA Ch1 254nm	4nm		
peak#	retention time (min)	area	area (%)
1	17.190	107411	49.860
2	19.936	108013	50.140

${\small < } Chromatogram {\small >} \\$

peak table C:¥data_131217¥murakami¥HM0124-C-IB001.lcd

PDA Ch1 254nm 4nm			
peak#	retention time (min)	area	area (%)
1	16.916	476565	97.175
2	20.131	13852	2.825

1 PDA Multi 1 / 254nm 4nm <Peak Report>

peak table C:¥data_131217¥murakami¥HM0525-IB003.lcd

PDA Ch1 254nm 4nm				
peak#	retention time (min)	area	area (%)	
1	26.085	84655	50.344	
2	28.090	83498	49.656	

<Chromatogram>

<Peak Report>

peak table C:¥data_131217¥murakami¥HM0526-IB001.lcd

FDA UNI 23400	4000		
peak#	retention time (min)	area	area (%)
1	27.732	54324	29.314
2	29.637	130993	70.686

<Peak Report>

peak table C:¥data_131217¥murakami¥HM0551−IB.lcd

PDA Ch1 254nm	4nm	+uala_101217+iiil	
peak#	retention time (min)	area	area (%)
1	13.040	67291	49.834
2	13.784	67740	50.166

<Chromatogram>

1 PDA Multi 1 / 254nm 4nm <Peak Report>

peak table C:¥data_131217¥murakami¥HM0550-IB.lcd

PDA Ch1 254nm 4nm				
peak#	retention time (min)	area	area (%)	
1	13.332	440616	94 <u>.</u> 445	
2	14.132	25918	5.555	

<Peak Report>

peak table C:¥data_131217¥murakami¥HM0150-B-IA001.lcd

4nm		
retention time (min)	area	area (%)
17.363	1032118	50.070
18.456	1029236	49.930
	4nm retention time (min) 17.363 18.456	4nm retention time (min) area 17.363 1032118 18.456 1029236

<Chromatogram>

PDA Ch1 254nm 4nm				
peak#	retention time (min)	area	area (%)	
1	17.799	24343	1.981	
2	18.800	1204526	98.019	

PDA Multi 1 / 220nm 4
<Peak Report>

peak table C:¥data_131217¥murakami¥HM0135-B-IB001.lcd

PDA Ch1 220nm	4nm		
peak#	retention time (min)	area	area (%)
1	16.019	2851908	49.822
2	20.800	2872271	50.178

<Chromatogram>

<Peak Report>

peak table C:¥data_131217¥murakami¥HM0136-B-IB001.lcd

PDA Ch1 220nm	4nm		
peak#	retention time (min)	area	area (%)
1	15.904	262510	6.579
2	20.219	3727434	93.421

1 PDA Multi 1 / 254nm 4nm <Peak Report>

peak table C:¥data_131217¥murakami¥HM0501–IB.lcd

PDA Ch1 254nm 4nm			
peak#	retention time (min)	area	area (%)
1	21.830	2954870	50.255
2	26.375	2924865	49.745

<Chromatogram>

1 PDA Multi 1 / 254nm 4nm <Peak Report>

peak table C:¥data_131217¥murakami¥HM0511-IB001.lcd

PDA Ch1 254nm 4nm			
peak#	retention time (min)	area	area (%)
1	18.988	16853273	93.145
2	23.742	1240399	6.855

$\langle Chromatogram \rangle$

1 PDA Multi 1 / 254nm 4nm <Peak Report>

peak table C:¥data_131217¥murakami¥HM0155-B-IB001.lcd

PDA Ch1 254nm	4nm	<u>_</u>	
peak#	retention time (min)	area	area (%)
1	16.289	206655	49.880
2	18.079	207647	50.120

$\langle Chromatogram \rangle$

HM-156-B C:¥data_131217¥murakami¥HM0156-B-IB001.lcd mAU 0.0 0.0 1 PDA Multi 1 / 254nm 4nm chromatogram HM-156-B C:¥data_131217¥murakami¥HM0156-B-IB001.lcd PDA Multi 1 1 PDA Multi 1 / 254nm 4nm

<Peak Report>

peak table C:¥data_131217¥murakami¥HM0156-B-IB001.lcd

PDA Ch1 254nm	4nm .	-	
peak#	retention time (min)	area	area (%)
1	16.421	84529	94.632
2	18.287	4795	5.368

1 PDA Multi 1 / 254nm 4nm <Peak Report>

peak table C:¥data_131217¥murakami¥HM0033-C-IA.lcd

PDA Ch1 254nm	4nm		
peak#	retention time (min)	area	area (%)
1	20.340	11004240	50.134
2	26.606	10945554	49.866

<Chromatogram>

peak table C:¥data_131217¥murakami¥HM0045-D-IA.lcd

PDA Ch1 254nm 4nm				
peak#	retention time (min)	area	area (%)	
1	20.425	2667915	93.426	
2	26.772	187744	6.574	

${\small < } Chromatogram {\small >} \\$

1 PDA Multi 1 / 254nm 4nm <Peak Report>

peak table C:¥data_131217¥murakami¥HM0156-B-IB001.lcd

DDA Chi 254mm 4mm				
PDA GNT 254nm 4nm				
peak#	retention time (min)	area	area (%)	
1	16.421	84529	94.632	
2	18.287	4795	5.368	

$\langle Chromatogram \rangle$

1 PDA Multi 1 / 254nm 4nm <Peak Report>

peak table C:\u00e4data_131217\u00e4murakami\u00e4HM0278-IB006.lcd

PDA Ch1 254nm 4nm			
peak#	retention time (min)	area	area (%)
1	13.958	29089	52 <u>.</u> 465
2	15.844	26356	47.535