Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information Appendix

Ketoreductase Catalyzed Stereoselective Bioreduction of α -Nitro Ketones

Zexu Wang,^[a, b] Xiaofan Wu,^[c] Zhining Li,^[a, b] Zedu Huang*^[a, b] and Fener Chen*^[a, b]

 [a] Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University
 220 Handan Road, Shanghai, 200433, P. R. China
 E-mail: <u>huangzedu@fudan.edu.cn</u>, <u>rfchen@fudan.edu.cn</u>

[b] Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road, Shanghai, 200433, P. R. China

[c] College of Chemical Engineering, Fuzhou University2 Xueyuan Road, Fuzhou, 350100, P. R. China

*Authors to whom correspondence should be addressed

Table of Contents	2
Chemicals	4
Molecular Biology	4
Reagents	4
Cloning Procedures	4
Enzymology	5
Reggents	5
Expression and Durification of KDEDs	
Expression and Purification of KREDs	0
Chemical Synthesis of Substrates and Product Standards	8
Table S3. The details of genes used in this study.	30
Figure S1. SDS-PAGE analysis of <i>N</i> -terminal-His ₆ -SyADH, <i>N</i> -terminal-His ₆ -RasA	DH
and N-terminal-His ₆ -YGL039w after IMAC purification.	31
Figure S2. SDS-PAGE analysis of coexpression of RasADH and GDH.	31
Figure S3. ¹ H NMR spectra of the products obtained by incubation of YGL039w w	rith
ketone 1a	32
Figure S4. ¹ H NMR spectrum of the products obtained by incubation of YGL039w	(0.3
mg/mL) with ketone 1a for 0.5 h at pH 5 (spectrum B from Figure S3 with integrat	tion)
Table S4. YGL039w catalyzed reduction of 1a under different pHs	33
Table S5. Screen KREDs against reduction of ketone 1a	34
Table S6. YGL039w and RasADH catalyzed synthesis of β-nitro alcohols 2.	35
Table S7. Chiral HPLC methods utilized for the determination of ee of alcohols 2	37
Table S8. Screen KREDs against reduction of ketone 4a	41
Table S9. YGL039w and SyADH catalyzed synthesis of β-nitro alcohols 5.	42
Table S10. Chiral HPLC methods utilized for the determination of ee of alcohols 5	43
Determination of the absolute configuration of alcohols 5.	45
Table S12. Characterization of products from YGL039w catalyzed preparative sca	le
reactions	49
Table S13. Characterization of products from RasADH catalyzed preparative scale	;
reactions	54
Table S14. Characterization of products from SyADH catalyzed preparative scale	
reactions	54
Table S15. YGL039w and RasADH catalyzed reduction of 1k at elevated sub	ostrate
concentrations	59
Table S16. YGL039w and RasADH catalyzed reduction of ketone 1k at elevated sub	ostrate
concentrations in the presence of other organic solvents	59
Table S1/. E coli. whole-cell coexpressing RasADH and GDH catalyzed reduct	ion of
ketone 1k at elevated substrate concentrations	02

Table S16. List of oligonucleotides used in this study	
¹ H NMR and ¹³ C NMR Spectra	
Chiral HPLC Spectra	

Chemicals

Unless otherwise specified, all reagents and solvent were purchased from commercial sources and used as received. ¹H (400 MHz) and ¹³C (100 MHz) NMR were recorded on a Bruker Avance 400 spectrometer in CDCl₃ using tetramethylsilane (TMS) as internal standards. Coupling constant (J) values are given in Hz. Products were purified by flash column chromatography on silica gel purchased from Qingdao Haiyang Chemical Co., Ltd. Optical rotations were measured by a Rudolph AUTOPOL I Automatic Polarimeter. HRMS were recorded on a Bruker micrOTOF spectrometer. HPLC analysis were performed with Daicel $(25 \text{ cm} \times 4.6 \text{ mm} \times 5 \text{ }\mu\text{m}),$ Chiralpak Chiralpak OD-H column IA column $(25 \text{ cm} \times 4.6 \text{ mm} \times 5 \text{ µm})$, Chiralpak IB column $(25 \text{ cm} \times 4.6 \text{ mm} \times 5 \text{ µm})$, Chiralpak IC column (25 cm \times 4.6 mm \times 5 µm), Chiralpak AD-H column (25 cm \times 4.6 mm \times 5 µm), Chiralpak AS-H column (25 cm \times 4.6 mm \times 5 μ m).

Molecular Biology

Reagents

Restriction enzymes (NdeI, NcoI, EcoRI and XhoI), PrimeSTAR® HS DNA Polymerase were purchased from TaKaRa (Japan). One Step Cloning Kit ClonExpress® II was purchased from Vazyme (Nanjing, China). PurePlasmid Mini Kit and Gel Extraction Kit were purchased from CWBIO (China). Chemically competent cells of *E. coli* DH5α and *E. coli* BL21 (DE3) were purchased from Transgen (China). Oligonucleotides were purchased from Genewiz (China) in standard, desalted form and used without further purification (Table S16). Synthetic genes (pET28a-LtCR, pET28a-RasADH, pET28a-CgCR, pET28a-KRED1-Pglu, pET28a-SsCR, pET28a-SeKRED, pET28a-LbADH, pET28a-LkADH, pET28a-SyADH, pET28a-TdADH, pET28a-KdoADH) were purchased from Genewiz (China) (Table S3). All other reagents were purchased from Sangon Biotech (China) unless otherwise specified. LB medium contained yeast extract (5 g/L), tryptone (10 g/L), NaCl (10 g/L). Antibiotics were used at the following concentration: kanamycin: 50 µg/mL, chloramphenicol: 25 µg/mL.

Cloning procedures

Cloning genes into pET28a vector

PCR products were amplified from genomic DNA of *Saccharomyces cerevisiae* s288c using the PrimeSTAR® HS DNA Polymerase with a T100 Thermal Cycler. The reaction began with an initial denaturing step for 180 s at 98 °C followed by 30 cycles of 10 s at 98 °C, 15 s at 55 °C and 90 s at 72 °C with a final extension step at 72 °C for 300 s. The resulting PCR products were ligated with linearized vectors, which were double digested at appropriate restriction sites (NdeI/XhoI or NcoI/XhoI), through homologous recombination using the One Step Cloning Kit ClonExpress® II. In general, a 10 µL reaction mixture containing 2 µL of 5×CE II Buffer, 1 µL of Exnase II, 50-200 ng linearized vector and 20-200 ng PCR amplicon was incubated at 37 °C for 30 min, and the resulting solution was used to transform chemically competent *E. coli* DH5 α cells. Colony PCR and sequencing (Genewiz, China) were performed to confirm the sequence fidelity of the recombinant plasmids.

Cloning glucose dehydrogenase (GDH) into multiple cloning site 1 (MCS1) of pACYCduet vector

PCR product was amplified with the previously constructed pET28b-GDH^[1] as the template using the PrimeSTAR® HS DNA Polymerase with a T100 Thermal Cycler. The reaction began with an initial denaturing step for 180 s at 98 °C followed by 30 cycles of 10 s at 98 °C, 15 s at 55 °C and 90 s at 72 °C with a final extension step at 72 °C for 300 s. The resulting PCR products were ligated with pACYC-duet vector linearized at NcoI/EcoRI restriction sites through homologous recombination using the One Step Cloning Kit ClonExpress® II. In general, a 10 µL reaction mixture containing 2 µL of 5×CE II Buffer, 1 µL of Exnase II, 50-200 ng linearized vector and 20-200 ng PCR amplicon was incubated at 37 °C for 30 min, and the resulting solution was used to transform chemically competent *E. coli* DH5 α cells. Colony PCR and sequencing (Genewiz, China) were performed to confirm the sequence fidelity of the recombinant plasmids. Such constructed plasmid was designated as pACYC-duet-GDH (MCS1).

Cloning RasADH and GDH into pRSF-duet vector

PCR product of RasADH was amplified with the constructed pET28a-RasADH as the template using the PrimeSTAR® HS DNA Polymerase with a T100 Thermal Cycler. The reaction began with an initial denaturing step for 180 s at 98 °C followed by 30 cycles of 10 s at 98 °C, 15 s at 55 °C and 90 s at 72 °C with a final extension step at 72 °C for 300 s. The resulting PCR products were ligated with pRSF-duet vector linearized at NcoI/EcoRI restriction sites through homologous recombination using the One Step Cloning Kit ClonExpress® II. In general, a 10 μ L reaction mixture containing 2 μ L of 5×CE II Buffer, 1 μ L of Exnase II, 50-200 ng linearized vector and 20-200 ng PCR amplicon was incubated at 37 °C for 30 min, and the resulting solution was used to transform chemically competent *E. coli* DH5 α cells. Colony PCR and sequencing (Genewiz, China) were performed to confirm the sequence fidelity of the recombinant plasmids. Such constructed plasmid was designated as pRSF-duet-RasADH (MCS1).

PCR product of GDH was amplified with the previously constructed pET28b-GDH as the template using the PrimeSTAR® HS DNA Polymerase with a T100 Thermal Cycler. The reaction began with an initial denaturing step for 180 s at 98 °C followed by 30 cycles of 10 s at 98 °C, 15 s at 55 °C and 90 s at 72 °C with a final extension step at 72 °C for 300 s. The resulting PCR products were ligated with plasmid pRSF-RasADH(1) linearized at NdeI/XhoI restriction sites through homologous recombination using the One Step Cloning Kit ClonExpress® II. In general, a 10 µL reaction mixture containing 2 µL of 5×CE II Buffer, 1 µL of Exnase II, 50-200 ng linearized vector and 20-200 ng PCR amplicon was incubated at 37 °C for 30 min, and the resulting solution was used to transform chemically competent *E. coli* DH5 α cells. Colony PCR and sequencing (Genewiz, China) were performed to confirm the sequence fidelity of the recombinant plasmids. Such constructed plasmid was designated as pRSF-duet-RasADH (MCS1)-GDH (MCS2).

Plasmid pRSF-duet-GDH (MCS1)-RasADH (MCS2) was constructed using the similar method.

Enzymology

Reagents

Nickel(II)-nitrilotriacetic acid (Ni-NTA) agarose was purchased from Sangon. Amicon ultracentrifugal filters were purchased from EMB Millipore. PD-10 desalting columns were

purchased from GE Healthcare. Isopropylthio-β-D-galactoside (IPTG) was obtained from Sangon. Lysis buffer consisted of 50 mM NaPi, 300 mM NaCl, 10 mM imidazole, 10% glycerol, pH 7.5. Wash buffer consisted of 50 mM NaPi, 300 mM NaCl, 20 mM imidazole, 10% glycerol, pH 7.5. Elution buffer consisted of 50 mM NaPi, 300 mM NaCl, 250 mM imidazole, 10% glycerol, pH 7.5. Storage buffer consisted of 50 mM NaPi, 300 mM NaPi, 300 mM NaCl, 10% glycerol, pH 7.5.

Expression and purification of His₆-tagged recombinant proteins

An approximately 12 h culture of E. coli BL21 (DE3) cells freshly transformed with the appropriate plasmid and grown in LB medium supplemented with kanamycin (50 µg/mL) was diluted 1:100 into 0.5 L of the same medium in a 2 L flask. The culture was shaken at 37 °C until the optical density at 600 nm reached 0.6-0.8, then the flask was placed in an ice/water bath for ca. 30 min before the addition of isopropylthio-β-D-galactoside (IPTG) to a final concentration of 100 µM. The culture was shaken for an additional 12-14 h at 18 °C. All the following purification steps were carried out at 4 °C. The cells (1.5-2 g wet mass from 0.5 L culture) were collected by centrifugation, and then resuspended in 20 mL of lysis buffer. The cells were lysed by sonication on ice and debris was removed by centrifugation at 37,000 x gfor 30 min at 4 °C. The supernatant was loaded onto a column containing 2-3 mL of Ni-NTA resin previously equilibrated with lysis buffer. After equilibration of the resin with the lysate in an orbital shaker for ca. 30 min, the flow-through was discarded and the resin was washed with 2×20 mL of wash buffer. Resin-bound protein was eluted with elution buffer. Fractions of 1 mL were collected and the absorbance at 280 nm was measured by a NanoDrop One spectrophotometer. Fractions with strong absorbance at 280 nm were pooled and concentrated in an Amicon Ultra centrifugal filter unit with 10 kDa molecular weight cut off (MWCO) to a final volume of 2.5 mL. Imidazole and excess salt was removed by passing the protein solution through a PD-10 desalting column previously equilibrated with storage buffer. Protein was eluted with 3.5 mL of storage buffer and stored in aliquots at -80 °C. The protein concentrations were measured by a NanoDrop One spectrophotometer with calculated extinction coefficient and molecular weight.

Co-expression of pET28a-RasADH and pACYC-duet-GDH (MCS1)

An approximately 12 h culture of *E. coli* BL21 (DE3) cells freshly co-transformed with plasmids pET28a-RasADH and pACYC-duet-GDH (MCS1), and grown in LB medium supplemented with kanamycin (50 μ g/mL) and chloramphenicol (25 μ g/mL) was diluted 1 : 100 into 0.5 L of the same medium in a 2 L flask. The culture was shaken at 37 °C until the optical density at 600 nm reached 0.6-0.8, then the flask was placed in an ice/water bath for ca. 30 min before the addition of isopropylthio- β -D-galactoside (IPTG) to a final concentration of 100 μ M. The culture was shaken for an additional 12-14 h at 18 °C. The cells (1.5-2 g wet mass from 0.5 L culture) were collected by centrifugation.

Expression of pRSF-duet-RasADH (MCS1)-GDH (MCS2) and pRSF-duet-GDH (MCS1)-RasADH (MCS2)

An approximately 12 h culture of *E. coli* BL21 (DE3) cells freshly transformed with plasmids pRSF-duet-RasADH (MCS1)-GDH (MCS2) or pRSF-duet-GDH (MCS1)-RasADH (MCS2),

and grown in LB medium supplemented with kanamycin (50 μ g/mL) was diluted 1 : 100 into 0.5 L of the same medium in a 2 L flask. The culture was shaken at 37 °C until the optical density at 600 nm reached 0.6-0.8, then the flask was placed in an ice/water bath for ca. 30 min before the addition of isopropylthio- β -D-galactoside (IPTG) to a final concentration of 100 μ M. The culture was shaken for an additional 12-14 h at 18 °C. The cells (1.5-2 g wet mass from 0.5 L culture) were collected by centrifugation.

References

[1] Z. Li, Z. Wang, G. Meng, H. Lu, Z. Huang and F. Chen, Asian. J. Org. Chem. 2018, 7, 763–769.

General procedures for the synthesis of substrates Method A

Scheme S1. General procedures for the synthesis of substrates using method A.^[1]

To a stirred solution of imidazole (2 equiv.) in anhydrous THF (100 mL) was dropwise added benzoyl chloride **S1** (1 equiv.). The resulting mixture was stirred vigorously at room temperature overnight. Thus formed white precipitate was filtered and washed with THF. The combined filtrate was concentrated to give crude **S2** as a light yellow oil which was used in the next step without further purification.

To a stirred solution of KOtBu (1.5 equiv.) in anhydrous THF (75 mL) was dropwise added CH_3NO_2 (6 equiv.) and the resulting mixture was stirred at room temperature for 2 h, at which time crude **S2** in THF was added dropwise. The resulting mixture was then stirred vigorously at room temperature for 24 h. The nitronate salt was filtered, washed with CH_2Cl_2 (50 mL) and dissolved in cold water (100 mL). The aqueous solution was then acidified slowly with 6 M HCl to pH 4-5 and then extracted with CH_2Cl_2 (3 × 50 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated to give pale yellow solids **1**.

Method B

Scheme S2. General procedures for the synthesis of substrates using method B.^[1]

A solution of acid **3** or **6** (1 equiv.) and 1,1'-carbonyldiimidazole (1.2 equiv.) in anhydrous THF (150 mL) was refluxed for 1 h. The resulting mixture was concentrated to give crude **S3** or **S4** as a light yellow oil which was used in the next step without further purification.

To a solution of KO*t*Bu (1.5 equiv.) in anhydrous THF (11 mL) was dropwise added CH₃NO₂ (6 equiv.) and the resulting mixture was stirred at room temperature for 2 h, at which time crude **S3** or **S4** in THF was added dropwise. The resulting mixture was stirred vigorously at room temperature for 24 h. The nitronate salt was filtered, washed with CH₂Cl₂ (50 mL) and dissolved in cold water (100 mL). The aqueous solution was acidified slowly with 6 M HCl to pH 4-5 and extracted with CH₂Cl₂ (3×50 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated to give an orange solid which was purified by flash chromatography to yield pale yellow solids **1** or **4**.

	2-nitro-1-phenylethan-1-one
$ \begin{array}{c} $	(Method B, prepared from benzoic acid, pale yellow solid, yield 77%). ¹ H NMR (DMSO, 400 MHz) δ/ppm 7.98-7.96 (m, 2H, Ar-H), 7.78-7.74 (m, 1H, Ar-H), 7.63-7.60 (m, 1H, Ar-H), 6.57 (s, 2H, C ₈ -H). ¹³ C NMR (DMSO, 100 MHz) δ/ppm 188.87 135.31 133.93 129.55, 128.92, 83.29.
$ \begin{array}{ccc} CI & O \\ 1 & J & NO_2 \\ 2 & J & 4 \\ 3 & 1b \end{array} $	1-(2-chlorophenyl)-2-nitroethan- 1-one (Method B, prepared from 2- chlorobenzoic acid, pale yellow solids, yield 79%). ¹ H NMR (DMSO, 400 MHz) δ/ppm 7.93- 7.91 (m, 1H, Ar-H), 7.68-7.63 (m, 2H, Ar-H), 7.56-7.52 (m, 1H, Ar- H), 6.44 (s, 2H, C ₈ -H). ¹³ C NMR (DMSO, 100 MHz) δ/ppm 189.36, 134.71, 133.79, 131.75, 131.03, 128.02, 84.54.
$1 \xrightarrow{6}{578} NO_2$ $1 \xrightarrow{6}{578} Ic$	2-nitro-1-(o-tolyl)ethan-1-one (Method A, prepared from 2- methylbenzoyl chloride, pale yellow solids, yield 86%). ¹ H NMR (DMSO, 400 MHz) δ/ppm 7.87- 7.84 (m, 1H, Ar-H), 7.59-7.55 (m, 1H, Ar-H), 7.43-7.39 (m, 2H, Ar- H), 6.45 (s, 2H, C ₈ -H). ¹³ C NMR (DMSO, 100 MHz) δ/ppm 190.92, 139.65, 133.79, 133.42, 132.73, 130.34, 126.70, 84.51, 21.55.

	1-(2-methoxyphenyl)-2-
	nitroethan-1-one (Method B,
	prepared from 2-methoxybenzoic
9	acid, pale yellow solids, yield
° O O	75%). ¹ H NMR (DMSO, 400
$1 \stackrel{6}{\smile} 7 \operatorname{NO}_2$	MHz) δ/ppm 7.85-7.83 (m, 1H, Ar-
	H), 7.71-7.67 (m, 1H, Ar-H), 7.26-
2 3	7.23 (m, 1H, Ar-H), 7.14-7.10 (m,
1d	1H, Ar-H), 6.12 (s, 2H, C ₈ -H), 3.93
	(s, 3H, C ₉ -H). ¹³ C NMR (DMSO,
	100 MHz) δ/ppm 187.90, 160.16,
	136.79, 130.67, 123.56, 121.33,
	113.38, 86.24, 56.51.
	1-(3-chlorophenyl)-2-nitroethan-
	1-one (Method B, prepared from 3-
	chlorobenzoic acid, pale yellow
Q	solids, yield 68%). ¹ H NMR
$Cl \xrightarrow{6}_{2} \xrightarrow{5}_{3} \xrightarrow{7}_{8} NO_2$	(DMSO, 400 MHz) δ/ppm 8.00-
	7.99 (m, 1H, Ar-H), 7.93-7.91 (m,
	1H, Ar-H), 7.84-7.82 (m, 1H, Ar-
1e	H), 7.67-7.63 (m, 1H, Ar-H), 6.57
	(s, 2H, C ₈ -H). ¹³ C NMR (DMSO,
	100 MHz) δ/ppm 188.02, 135.71,
	134.92, 134.43, 131.48, 128.67,
	127.50, 83.25.
	2-nitro-1-(m-tolyl)ethan-1-one
	(Method B, prepared from 3-
	methylbenzoic acid, pale yellow
0	solids, yield 65%). ¹ H NMR
9 1 6 ↓ NOc	(DMSO, 400 MHz) δ/ppm 7.79-
5 / 8	7.75 (m, 2H, Ar-H), 7.58-7.56 (m,
$2 \frac{4}{3}$	1H, Ar-H), 7.51-7.47 (m, 1H, Ar-
۔ ۲f	H), 6.52 (s, 2H, C ₈ -H), 2.40 (s, 3H,
	C ₉ -H). ¹³ C NMR (DMSO, 100
	MHz) δ/ppm 188.88, 139.11,
	135.93, 133.95, 129.44, 129.21,
	126.17, 83.27, 21.23.

	1-(3-methoxyphenyl)-2-
	nitroethan-1-one (Method B,
	prepared from 3-methoxybenzoic
0	acid, pale yellow solids, yield
$0, 1 \stackrel{6}{\sim} \downarrow N0_2$	72%). ¹ H NMR (DMSO, 400
9 5 7 8 10 2	MHz) δ/ppm 7.56-7.53 (m, 2H, Ar-
2 4	H), 7.46 (m, 1H, Ar-H), 7.35-7.29
3 1a	(m, 1H, Ar-H), 6.54 (s, 2H, C ₈ -H),
'9	3.85 (s, 3H, C_9 -H). ¹³ C NMR
	(DMSO, 100 MHz) δ/ppm 188.72,
	160.02, 135.20, 130.77, 121.35,
	121.30, 113.41, 83.35, 55.98.
	2-nitro-1-(3-
	(trifluoromethyl)phenyl)ethan-
	1-one (Method B, prepared from 3-
9 e II	(trifluoromethyl)benzoic acid, pale
F_3C_1 NO ₂	yellow solids, yield 77%). ¹ H NMR
	(DMSO, 400 MHz) δ/ppm 8.28-
3	8.27 (m, 2H, Ar-H), 8.16-8.14 (m,
III	1H, Ar-H), 7.91-7.87 (m, 1H, Ar-
	H), 6.67 (s, 2H, C_8 -H). ¹³ C NMR
	(DMSO, 100 MHz) δ/ppm 188.17,
	134.73, 132.80, 131.44 (q, <i>J</i> = 3.76
	Hz), 130.86, 130.29 (q, $J = 37.6$
	Hz), 125.49 (q, $J = 3.84$ Hz),
	124.09 (q, <i>J</i> = 270.86 Hz).
	1-(4-chlorophenyl)-2-nitroethan-
	1-one (Method B, prepared from 4-
	chlorobenzoic acid, pale yellow
$\stackrel{6}{\leftarrow}$ NO ₂	solids, yield 66%). ¹ H NMR
	(DMSO, 400 MHz) δ/ppm 7.98-
	7.95 (m, 2H, Ar-H), 7.71-7.68 (m,
Cl^{2} 3	2H, Ar-H), 6.55 (s, 2H, C_8 -H). ¹³ C
ں 1i	NMR (DMSO, 100 MHz) δ/ppm
	188.80, 140.30, 132.65, 130.80,
	129.69, 83.20.

	2-nitro-1-(p-tolyl)ethan-1-one
$ \begin{array}{c} $	(Method B, prepared from 4- methylbenzoic acid, pale yellow solids, yield 72%). ¹ H NMR (DMSO, 400 MHz) δ/ppm 7.86- 7.85 (m, 2H, Ar-H), 7.43-7.41 (m, 2H, Ar-H), 6.51 (s, 2H, C ₈ -H), 2.42 (s, 3H, C ₉ -H). ¹³ C NMR (DMSO, 100 MHz) δ/ppm 188.31, 146.14, 131.46, 130.10, 129.02, 83.20, 21.78.
	1-(4-methoxyphenyl)-2-
$ \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{1} + 1$	nitroethan-1-one (Method B, prepared from 4-methoxybenzoic acid, pale yellow solids, yield 75%). ¹ H NMR (CDCl ₃ , 400 MHz) δ /ppm 7.89-7.87 (m, 2H, Ar-H), 7.03-7.01 (m, 2H, Ar-H), 5.86 (s, 2H, C ₈ -H), 3.93 (s, 3H, C ₉ -H). ¹³ C NMR (DMSO, 100 MHz) δ /ppm 184.00, 165.04, 130.76, 126.44, 114.57, 81.06, 55.72.
	2-nitro-1-(4-
$F_{3}C^{9} \xrightarrow{2}_{3}C^{4}$	(trifluoromethyl)phenyl)ethan- 1-one (Method B, prepared from 4- (trifluoromethyl)benzoic acid, pale yellow solids, yield 61%). ¹ H NMR (DMSO, 400 MHz) δ /ppm 8.17- 8.15 (m, 2H, Ar-H), 7.99-7.97 (m, 2H, Ar-H), 6.61 (s, 2H, C ₈ -H). ¹³ C NMR (DMSO, 100 MHz) δ /ppm 188.47, 137.13, 134.28, (q, <i>J</i> = 32.03 Hz), 129.77, 126.46 (q, <i>J</i> = 3.6 Hz), 124.02 (q, <i>J</i> = 271.21Hz), 83.33.

	1-(4-fluorophenyl)-2-nitroethan-
0 $1 \xrightarrow{6}{578} NO_2$	1-one (Method B, prepared from 4-
	fluorobenzoic acid, pale yellow
	solids, yield 76%). ¹ H NMR
	(DMSO, 400 MHz) δ/ppm 8.06-
	8.03 (m, 2H, Ar-H), 7.47-7.43 (m,
F^{2}	2H, Ar-H), 6.54 (s, 2H, C ₈ -H). ¹³ C
3	NMR (DMSO, 100 MHz) δ/ppm
1m	187.52, 166.38 (d, <i>J</i> = 252.74 Hz),
	132.12 (d, $J = 9.86$ Hz), 130.70 (d,
	J = 2.85 Hz), 116.72 (d, $J = 22.26$
	Hz), 83.16.
	1-(4-bromophenyl)-2-nitroethan-
	1-one (Method B, prepared from 4-
	bromobenzoic acid, pale yellow
	solids, vield 61%). ¹ H NMR
O 6 II	(DMSO, 400 MHz) δ/ppm 7.89-
1 $1 $ $1 $ $1 $ $1 $ $1 $ $1 $ 1	7.81 (m. 4H. Ar-H), 6.54 (s. 2H.
Br ⁻² 3 8	C_{8} -H). ¹³ C NMR (DMSO 100
	MHz) δ/npm 188 22 132 98
1n	132 65 130 83 129 59 83 16
	192.00, 190.00, 129.09, 05.10.
	N-(4-(2-
	nitroacetyl)phenyl)acetamide
	(Method B. prepared from 4-
0 6 II	acetamidobenzoic acid pale
	vellow solids vield 61%) ¹ H NMR
O_{1} 1 5 7 8 NO_{2}	(DMSO 400 MHz) δ /ppm 10 41(s
	1H N-H) 7 92-7 89 (m 2H Ar-
H^{11} H^{3}	H) 7 79-7 75 (m 2H Δr -H) 6 45
⁹ 1o	(s 2H Co-H) 2 12 (s 2H C. H)
	^{13}C NMP (DMSO 100 MU~)
	δ /mm 18710 16068 14554
	120 42 120 20 110 70 02 00
	150.42, 128.50, 118.78, 82.99,
	24./1.

	2-nitro-1-(4-nitrophenyl)ethan-
	1-one (Method B, prepared from 4-
	nitrobenzoic acid, pale yellow
Q	solids, yield 65%). ¹ H NMR
6 NO ₂	(DMSO, 400 MHz) 8/ppm 8.42-
	8.40 (m, 2H, Ar-H), 8.20-8.18 (m,
$O_2 N^{2} 3^{4}$	2H, Ar-H), 6.63 (s, 2H, C_8 -H). ¹³ C
1р	NMR (DMSO, 100 MHz) 8/ppm
	188.18, 151.18, 138.47, 130.39,
	124.49, 83.37.
	1-(4-(tert-butyl)phenyl)-2-
	nitroethan-1-one (Method B,
	prepared from 4-(tert-
о	butyl)benzoic acid, pale yellow
$1 \frac{6}{7} NO_2$	solids, yield 64%). ¹ H NMR
$10 \begin{array}{c} 12 \\ 9 \\ 9 \\ 3 \end{array} \begin{array}{c} 5 \\ 4 \\ 4 \end{array} \begin{array}{c} 7 \\ 8 \\ 4 \end{array} \begin{array}{c} 2 \\ 8 \\ 4 \end{array}$	(DMSO ₃ , 400 MHz) δ/ppm 7.92-
	7.89 (m, 2H, Ar-H), 7.64-7.62 (m,
¹¹ 1 a	2H, Ar-H), 6.52 (s, 2H, C ₈ -H), 1.32
- 4	$(s, 9H, C_{10}, C_{11}, C_{12}-H)$. ¹³ C NMR
	(DMSO, 100 MHz) δ/ppm 188.23,
	158.62, 131.46, 128.91, 126.38,
	83.19, 35,52, 31.14.
	1-(2,4-dichlorophenyl)-2-
	nitroethan-1-one (Method B,
CI O O O O O O O O O O O O O O O O O O O	prepared from 2,4-dichlorobenzoic
	acid, pale yellow solids, yield
	36%). H NMR (DMSO, 400
	MHZ) 0/ppm /.90-/.94 (m, 1H, Ar-
	764 (m 1H Ar U) 642 (s 2U
1r	(1.07 (III, III, AI-II), 0.42 (S, 2II, III), 0.42 (S, 2III), 0.4
	MH_{z} S/nnm 199.42 120.94
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	84 45
	07.7.5.

	1-(3,4-dichlorophenyl)-2-
	nitroethan-1-one (Method B,
	prepared from 3,4-dichlorobenzoic
	acid, pale yellow solids, yield
	80%). ¹ H NMR (DMSO, 400
$C_1 \xrightarrow{1} 5_8$ NO_2	MHz) δ/ppm 8.18-8.17 (m, 1H, Ar-
$Cl - \frac{1}{2} + 4$	H), 7.92-7.87 (m, 2H, Ar-H), 6.56
3 1e	(s, 2H, C ₈ -H). ¹³ C NMR (DMSO,
15	100 MHz) δ/ppm 187.26, 138.12,
	134.06, 132.59, 131.83, 130.88,
	128.77, 83.14.
	1-(naphthalen-2-yl)-2-
	nitroethan-1-one (Method A,
	prepared from 1-naphthoyl
$11 \xrightarrow{10}{9} \xrightarrow{0}{7} \xrightarrow{0}{8} \operatorname{NO}_2$	chloride, reddish solid, yield 84%).
	¹ H NMR (DMSO, 400 MHz)
	δ/ppm 8.74-8.72 (m, 1H, Ar-H),
	8.30-8.28 (m, 1H, Ar-H), 8.23-8.21
	(m, 1H, Ar-H), 8.08-8.06 (m, 1H,
	Ar-H), 7.75-7.64 (m, 3H, Ar-H),
	6.64 (s, 2H, C_8 -H). ¹³ C NMR
	(DMSO, 100 MHz) δ/ppm 191.09,
	135.46, 134.02, 131.10, 130.56,
	130.06, 129.39, 129.33, 127.37,
	125.37, 125.20, 84.55.
	1-(naphthalen-2-yl)-2-
	nitroethan-1-one (Method A,
	prepared from 2-naphthoyl
0	chloride, reddish solid, yield 83%).
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ 10\\ \end{array} \\ 11\\ \end{array} \\ 12\\ \end{array} \\ \begin{array}{c} \end{array} \\ 1 \\ \end{array} \\ \begin{array}{c} \end{array} \\ 1 \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	¹ H NMR (DMSO, 400 MHz)
	δ/ppm 8.68-8.67 (m, 1H, Ar-H),
	8.14-8.04 (m, 3H, Ar-H), 7.98-7.96
	(m, 1H, Ar-H), 7.77-7.66 (m, 2H,
	Ar-H), 6.68 (s, 2H, C_8 -H). ¹³ C
	NMR (DMSO, 100 MHz) δ/ppm
	188.70, 136.13, 132.38, 131.64,
	131.27, 130.20, 129.98, 129.26,
	128.32, 127.87, 123.60, 83.28.

	1-nitro-3-phenylpropan-2-one
$1 \underbrace{\begin{array}{c} 6 \\ 5 \\ 2 \end{array}} \underbrace{\begin{array}{c} 7 \\ 5 \\ 4 \end{array}} \underbrace{\begin{array}{c} 9 \\ 7 \\ 0 \end{array}} \operatorname{NO}_2$	(Method B, prepared from 2- phenylacetic acid, pale yellow solids, yield 64%). ¹ H NMR
	(DMSO, 400 MHz) δ/ppm 7.38- 7.23 (m, 5H, Ar-H), 5.92 (s, 2H,
3 1v	C ₉ -H), 3.95 (s, 2H, C ₇ -H). ¹³ C
	NMR (DMSO, 100 MHz) 0/ppm
	127.55, 84.54, 46.47.
	1-nitro-4-phenylbutan-2-one
$ \frac{1}{2} \underbrace{\int_{3}^{6} \frac{7}{8} \underbrace{\int_{9}^{7} \frac{0}{10}}_{10} NO_{2}}{\mathbf{1w}} $	(Method B, prepared from 3- phenylpropanoic acid, pale yellow solids, yield 83%). ¹ H NMR (DMSO, 400 MHz) δ/ppm 7.32- 7.19 (m, 5H, Ar-H), 5.85 (s, 2H, C ₁₀ -H), 2.95-2.91 (m, 2H, C ₈ -H), 2.88-2.82 (m, 2H, C ₇ -H). ¹³ C NMR (DMSO, 100 MHz) δ/ppm 198.42, 140.83, 128.83, 128.70, 126.54, 84.63, 41.51, 28.72.
	1-nitro-3-phenoxypropan-2-one
$ \begin{array}{c} 0\\ 1\\ 2\\ 4 \end{array} $ $ \begin{array}{c} 0\\ 7\\ 9 \end{array} $ $ \begin{array}{c} 0\\ NO_2\\ 9 \end{array} $	(Method B, prepared from 2- phenoxyacetic acid, pale yellow
	solids, yield 73%). ¹ H NMR
	(DMSO, 400 MHz) δ/ppm 7.35- 7 31 (m 2H Ar-H) 7.02-6.97 (m
	3H, Ar-H), 5.98 (s, 2H, C ₉ -H), 5.03
3 4a	(s, 2H, C ₇ -H). ¹³ C NMR (DMSO,
	100 MHz) 0/ppm 195.54, 157.78, 130.03, 121.93, 115.02, 82.61
	71.10. HRMS Calcd. For
	C ₉ H ₈ NO ₄ [M-H] ⁻ : 194.0459,
	Found: 194.0456.

	1-nitro-3-(p-tolyloxy)propan-2-
	one (Method B, prepared from 2-
	(p-tolyloxy)acetic acid, pale
0	yellow solids, yield 74%). ¹ H NMR
$1 \stackrel{6}{\sim} 0 \stackrel{1}{\sim} 10^{\circ}$	(DMSO, 400 MHz) δ/ppm 7.13-
	7.11 (m, 2H, Ar-H), 6.88-6.85 (m,
10^{-2} 4	2H. Ar-H), 5.96 (s. 2H. C ₉ -H), 4.98
4e	(s 2H C ₇ -H) 2 25 (s 3H C ₁₀ -H)
	^{13}C NMR (DMSO 100 MHz)
	δ/ppm 195.67 155.71 130.72
	130 34 114 86 82 61 71 25
	20.50 HBMS Calcd For
	Control M HI
	$C_{10}H_{10}NO4[M-H]$. 208.0015,
	Found: 208.0606.
	1-(4-metnoxypnenoxy)-3-
	nitropropan-2-one (Method B,
	prepared from 2-(4-
$10 \qquad 0 \qquad$	methoxyphenoxy)acetic acid, pale
	yellow solids, yield 81%). 'H NMR
	(DMSO, 400 MHz) 8/ppm 6.93-
	6.87 (m, 4H, Ar-H), 5.95 (s, 2H,
41	C ₉ -H), 4.95 (s, 2H, C ₇ -H), 3.72 (s,
	3H, C ₁₀ -H). ¹³ C NMR (DMSO, 100
	MHz) δ/ppm 195.85, 154.49,
	151.80, 116.06, 115.10, 82.64,
	71.87, 55.83. HRMS Calcd. For
	$C_{10}H_{10}NO_{5}[M-H]^{-}$: 224.0564,
	Found: 224.0565.
	1-(4-fluorophenoxy)-3-
	nitropropan-2-one (Method B,
	prepared from 2-(4-
	fluorophenoxy)acetic acid, pale
	yellow solids, yield 63%). ¹ H NMR
\int_{A}^{5} 7 9	(DMSO, 400 MHz) δ/ppm 7.17-
$F^{2} \xrightarrow{3}{3}^{4}$	7.12 (m, 2H, Ar-H), 7.01-6.98 (m,
4g	2H, Ar-H), 5.96 (s, 2H, C ₉ -H), 5.01
	(s, 2H, C ₇ -H). ¹³ C NMR (DMSO,
	100 MHz) δ/ppm 195.45, 157.45
	(d, J = 235.32 Hz), 154.14 (d, J =
	2.06 Hz), 116.49, 116.33 (d, $J =$
	16.19 Hz), 82.55, 71.71. HRMS
	Calcd. For $C_9H_7FNO_4[M-H]^-$:
	212.0365, Found: 212.0368.

	1-(4-chlorophenoxy)-3-
	nitropropan-2-one (Method B,
	prepared from 2-(4-
0	chlorophenoxy)acetic acid, pale
$1 \wedge 0 \wedge NO_2$	yellow solids, yield 51%). ¹ H NMR
	(DMSO, 400 MHz) 8/ppm 7.38-
Cl^{2} $\frac{4}{3}$	7.35 (m, 2H, Ar-H), 7.02-6.99 (m,
4h	2H, Ar-H), 5.96 (s, 2H, C9-H), 5.04
	(s, 2H, C ₇ -H). ¹³ C NMR (DMSO,
	100 MHz) δ/ppm 195.20, 156.70,
	129.76, 125.68, 116.85, 82.52,
	71.35. HRMS Calcd. For
	C ₉ H ₇ ClNO ₄ [M-H] ⁻ : 228.0069,
	Found: 228.0078.
	1-nitro-3-(4-
	nitrophenoxy)propan-2-one
	(Method B, prepared from 2-(4-
0	nitrophenoxy)acetic acid, pale
$1 \stackrel{6}{\frown} 0 \stackrel{1}{\frown} NO_2$	yellow solids, yield 81%). ¹ H NMR
	(DMSO, 400 MHz) δ/ppm 8.25-
$O_2 N^{\frac{2}{3}}$	8.21 (m, 2H, Ar-H), 7.21-7.18 (m,
4i	2H, Ar-H), 5.98 (s, 2H, C ₉ -H), 5.24
	(s, 2H, C ₇ -H). ¹³ C NMR (DMSO,
	100 MHz) δ/ppm 194.46, 163.03,
	141.97, 126.29, 115.67, 82.41,
	71.50. HRMS Calcd. For
	$C_9H_7N_2O_6[M-H]^-$: 239.0310,
	Found: 239.0315.
	1-(naphthalen-1-yloxy)-3-
	nitropropan-2-one (Method B,
	prepared from 2-(naphthalen-1-
$12 \qquad 0 \qquad $	yloxy)acetic acid, pale yellow
	solids, yield 66%). ¹ H NMR
	(DMSO ₃ , 400 MHz) δ/ppm 8.31-
2 4	8.28 (m, 1H, Ar-H), 7.92-7.90 (m,
3 4 i	1H, Ar-H), 7.58-7.54 (m, 3H, Ar-
ני	H), 7.46-7.42 (m, 1H, Ar-H), 6.99-
	6.9/ (m, 1H, Ar-H), 6.14 (s, 2H,
	(-9-H), 5.21 (s, 2H, $-7-H$). ¹³ C
	NMR (DMSO, 100 MHZ) 0/ppm
	195.57, 155.20, 154.58, 127.97,
	12/.13, 126.40, 126.08, 125.13,
	122.13, 121.47, 106.18, 82.97,
	71.71. HRMS Calcd. For

$C_{13}H_{10}NO_{4}[M-H]^{-}$:	244.0615,
Found: 244.0614.	

General procedures for the synthesis of *racemic* alcohols Method C

Scheme S3. General procedures for the synthesis of *racemic* alcohols using method C.^[2]

To a stirred solution of ketones 1 or 4 (1.0 eqiuv.) in methanol (5 mL) was added sodium borohydride (1.0 equiv.) in portion. When the reduction was completed (monitored by the TLC), a few drops of 1 M HCl were added. The solvent was evaporated *in vacuo*. Then water (10 mL) was added to the residue and the solution was extracted with DCM (3 x 10 mL). The organic layers were combined and dried over Na₂SO₄. The solvent was evaporated and the residue was purified by flash column chromatography (silica gel) using mixtures of petroleum ether /ethyl acetate or DCM/methanol as eluents to afford products *rac*-**2** or *rac*-**5**. Isolated yields: 45 -80%.

Method D

Scheme S4. General procedures for the synthesis of *racemic* alcohols using method D.^[3]

To a solution of aldehyde **S5** (1.0 equiv.) and nitromethane (1.4 equiv.) in ethanol (15 mL) was added sodium acetate (0.3 equiv.) at room temperature. The resulting suspension was stirred for 24 h, and was then filtered. The filtrate was concentrated *in vacuo* and the residue was purified by flash column chromatography to afford products *rac*-**2**. Isolated yields: 56-88%.

Tuble 521 Character Eation of Tace	and alcohols fu fit and cu cj.
о́н	2-nitro-1-phenylethan-1-ol (Method B,
	prepared from benzaldehyde, colorless
	liquid). ¹ H NMR (DMSO, 400 MHz)
3	δ/ppm 7.46-7.40 (m, 2H, Ar-H), 7.38-7.37
2a	(m, 2H, Ar-H), 7.34-7.30 (m, 1H, Ar-H),
	6.09 (d, 1H, <i>J</i> = 4.96 Hz, O-H), 5.30-5.25
	(m, 1H, C7-H), 4.87-4.83 (m, 1H, C8-H),
	4.60-4.54 (m, 1H, C ₈ -H).

	Table S2.	Characterization	of racemic	alcohols	2a-2w	and 5a-5	i.
--	-----------	------------------	------------	----------	-------	----------	----

сі он	1-(2-chlorophenyl)-2-nitroethan-1-ol
$1 \frac{6}{15} \frac{17}{5} NO_2$	(Method D, prepared from 2-
	chlorobenzaldehyde, colorless liquid). ¹ H
3	NMR (400 MHz, DMSO) δ/ppm 7.68-7.66
2b	(m, 1H, Ar-H), 7.49 – 7.35 (m, 3H, Ar-H),
	6.32 (d, 1H, <i>J</i> = 4.96 Hz, O-H), 5.64-5.59
	(m, 1H, C ₇ -H), 4.85-4.81 (m, 1H, C ₈ -H),
	4.53-4.51 (m, 1H, C ₈ -H).
9 - OH	2-nitro-1-(o-tolyl)ethan-1-ol (Method D,
	prepared from 2-methylbenzaldehyde,
	colorless liquid). ¹ H NMR (400 MHz,
2 4	DMSO) δ/ppm 7.52-7.50 (m, 1H, Ar-H),
³ 2c	7.27 - 7.18 (m, 3H, Ar-H), 5.99 (d, 1H, $J =$
	4.84 Hz, O-H), 5.50-5.45 (m, 1H, C ₇ -H),
	4.83-4.80 (m, 1H, C ₈ -H), 4.51-4.46 (m,
	1H, C ₈ -H), 2.37, (s, 3H, C ₉ -H).
9	1-(2-methoxyphenyl)-2-nitroethan-1-ol
O OH	(Method C, prepared from 1-(2-
$1 \frac{6}{1}$ NO ₂	methoxyphenyl)-2-nitroethan-1-one,
	colorless liquid). ¹ H NMR (400 MHz,
3 24	DMSO) δ/ppm 7.50-7.48 (m, 1H, Ar-H),
20	7.34–7.29 (m, 1H, Ar-H), 7.03-6.98 (m,
	2H, Ar-H), 5.96 (d, 1H, <i>J</i> = 5.24 Hz, O-H),
	5.58-5.53 (m, 1H, C ₇ -H), 4.77-4.73 (m,
	1H, C ₈ -H), 4.42-4.36 (m, 1H, C ₈ -H), 3.84
	(s, 3H, C ₉ -H).
OH	1-(3-chlorophenyl)-2-nitroethan-1-ol
CI_{1} NO_2	(Method D, prepared from 3-
	chlorobenzaldehyde, colorless liquid). ¹ H
3	NMR (400 MHz, DMSO) δ/ppm 7.53 (s,
2e	1H, Ar-H), 7.43-7.37 (m, 3H, Ar-H), 6.23
	(d, 1H, $J = 5.08$ Hz, O-H), 5.33-5.29 (m,
	1H, C7-H), 4.93-4.88 (m, 1H, C8-H), 4.64-
	4.58 (m, 1H, C ₈ -H).
OH	2-nitro-1-(m-tolyl)ethan-1-ol (Method C,
⁹ 1 NO ₂	prepared from 2-nitro-1-(m-tolyl)ethan-1-
	one, colorless liquid). ¹ H NMR (400 MHz,
3	DMSO) δ/ppm 7.29-7.22 (m, 3H, Ar-H),
21	7.14-7.12 (m, 1H, Ar-H), 6.05 (d, 1H, $J =$
	4.96 Hz, O-H), 5.26-5.21 (m, 1H, C ₇ -H),
	4.85-4.81 (m, 1H, C ₈ -H), 4.58-4.52 (m,
	1H, C ₈ -H), 2.32 (s, 3H, C ₉ -H).

ОН	1-(3-methoxyphenyl)-2-nitroethan-1-ol
$O_1 \stackrel{6}{\frown} 7 NO_2$	(Method D, prepared from 3-
9	methoxybenzaldehyde, colorless liquid).
2 4 3	¹ H NMR (400 MHz, DMSO) δ/ppm 7.31-
2g	7.27 (m, 1H, Ar-H), 7.03-7.00 (m, 2H, Ar-
	H), 6.90-6.87 (m, 1H, Ar-H), 6.09 (d, 1H,
	J = 5.24 Hz, O-H), 5.28-5.23 (m, 1H, C ₇ -
	H), 4.88-4.84 (m, 1H, C ₈ -H), 4.59-4.53 (m,
	1H, C ₈ -H), 3.77 (m, 3H, C ₉ -H).
₉ ОН	2-nitro-1-(3-
$F_3C_1 \xrightarrow{6} 7 NO_2$	(trifluoromethyl)phenyl)ethan-1-ol
	(Method D, prepared from 3-
$2 \sqrt{4}$	(trifluoromethyl)benzaldehyde, colorless
2h	liquid). ¹ H NMR (400 MHz, DMSO)
	δ/ppm 7.83 (s, 1H, Ar-H), 7.78-7.73 (m,
	1H, Ar-H), 7.70 – 7.68 (m, 1H, Ar-H),
	7.65-7.61 (m, 1H, Ar-H), 6.31 (d, 1H, J =
	5.06 Hz, O-H), 5.43-5.39 (m, 1H, C ₇ -H),
	4.97-4.93 (m, 1H, C ₈ -H), 4.68-4.62 (m,
	1H, C ₈ -H).
ОН	1-(4-chlorophenyl)-2-nitroethan-1-ol
$1 \frac{6}{7} NO_2$	(Method C, prepared from 1-(4-
	ablaranhanyl) 2 nitraathan 1 ana
	chlorophenyr)-2-muoethan-1-one,
$Cl = \frac{1}{3} 4$	colorless liquid). ¹ H NMR (400 MHz,
Cl ² 3 2i	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ/ppm 7.49-7.43 (m, 4H, Ar-H),
Cl ² 3 ⁴ 2i	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, <i>J</i> = 4.96 Hz, O-H), 5.31-5.26
Cl ² 3 ⁴ 2i	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, <i>J</i> = 4.96 Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H),
Cl ² 3 ⁴ 2i	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, <i>J</i> = 4.96 Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H).
CI 2 3 4 2i	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, <i>J</i> = 4.96 Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D,
$CI \xrightarrow{2}_{3} 4$ $2i$ OH $1 \xrightarrow{6}_{7} NO_{2}$	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, $J = 4.96$ Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde,
$CI \xrightarrow{2}_{3} 4$ $2i$ OH $1 \xrightarrow{6}_{5} 8} NO_{2}$	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, <i>J</i> = 4.96 Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz,
$CI \xrightarrow{2}_{3} 4$ $2i$ OH $0H$ $1 \xrightarrow{6}_{5} 8} NO_{2}$ $9 \xrightarrow{2}_{3} 4$	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, <i>J</i> = 4.96 Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H),
$CI \xrightarrow{2}_{3} 4$ $2i$ OH $1 \xrightarrow{6}_{7} NO_{2}$ $9 \xrightarrow{2}_{3} 4$ $2i$	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, $J = 4.96$ Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H), 7.20-7.18 (m, 2H, Ar-H), 6.02 (d, 1H, $J =$
$CI \xrightarrow{2}_{3} 4$ $2i$ OH $1 \xrightarrow{6}_{5} 8} NO_{2}$ $9 \xrightarrow{2}_{3} 4$ $2j$	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, $J = 4.96$ Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H), 7.20-7.18 (m, 2H, Ar-H), 6.02 (d, 1H, $J =$ 5.04 Hz, O-H), 5.26-5.22 (m, 1H, C ₇ -H),
$ \begin{array}{c} CI & 2 & 3 \\ & 2i \\ & & 2i \\ & & & \\ & & & \\ & & & & \\ & & & &$	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, $J = 4.96$ Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H), 7.20-7.18 (m, 2H, Ar-H), 6.02 (d, 1H, $J =$ 5.04 Hz, O-H), 5.26-5.22 (m, 1H, C ₇ -H), 4.83-4.79 (m, 1H, C ₈ -H), 4.58-4.52 (m,
$CI \xrightarrow{2}_{3} 4$ $2i$ OH $1 \xrightarrow{6}_{7} NO_{2}$ $9 \xrightarrow{2}_{3} 4$ $2j$	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, <i>J</i> = 4.96 Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H), 7.20-7.18 (m, 2H, Ar-H), 6.02 (d, 1H, <i>J</i> = 5.04 Hz, O-H), 5.26-5.22 (m, 1H, C ₇ -H), 4.83-4.79 (m, 1H, C ₈ -H), 4.58-4.52 (m, 1H, C ₈ -H), 2.31 (s, 3H, C ₉ -H).
$CI \xrightarrow{2}_{3} 4$ $2i$ OH $1 \xrightarrow{6}_{3} 5$ 9 $2j$ OH	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, $J = 4.96$ Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H), 7.20-7.18 (m, 2H, Ar-H), 6.02 (d, 1H, $J =$ 5.04 Hz, O-H), 5.26-5.22 (m, 1H, C ₇ -H), 4.83-4.79 (m, 1H, C ₈ -H), 4.58-4.52 (m, 1H, C ₈ -H), 2.31 (s, 3H, C ₉ -H). 1-(4-methoxyphenyl)-2-nitroethan-1-ol
$CI \xrightarrow{2}_{3} 4$ $2i$ OH $1 \xrightarrow{6}_{5} 8$ QH $2j$ OH $1 \xrightarrow{6}_{5} 7$ OH $1 \xrightarrow{6}_{5} 7$ NO_{2}	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, $J = 4.96$ Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H), 7.20-7.18 (m, 2H, Ar-H), 6.02 (d, 1H, $J =$ 5.04 Hz, O-H), 5.26-5.22 (m, 1H, C ₇ -H), 4.83-4.79 (m, 1H, C ₈ -H), 4.58-4.52 (m, 1H, C ₈ -H), 2.31 (s, 3H, C ₉ -H). 1-(4-methoxyphenyl)-2-nitroethan-1-ol (Method C, prepared from 1-(4-
$CI \xrightarrow{2}_{3} 4$ $2i$ OH $0H$ $1 \xrightarrow{6}_{5} 8} NO_{2}$ $9 \xrightarrow{2}_{3} 4$ OH OH OH OH OH OH OH OH	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, $J = 4.96$ Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H), 7.20-7.18 (m, 2H, Ar-H), 6.02 (d, 1H, $J =$ 5.04 Hz, O-H), 5.26-5.22 (m, 1H, C ₇ -H), 4.83-4.79 (m, 1H, C ₈ -H), 4.58-4.52 (m, 1H, C ₈ -H), 2.31 (s, 3H, C ₉ -H). 1-(4-methoxyphenyl)-2-nitroethan-1-ol (Method C, prepared from 1-(4- methoxyphenyl)-2-nitroethan-1-one,
$CI \xrightarrow{2}_{3} 4$ $2i$ OH $1 \xrightarrow{6}_{5} 8$ OH $2j$ OH $1 \xrightarrow{6}_{7} NO_{2}$ $9 \xrightarrow{0}_{2} 3$ OH NO_{2} $9 \xrightarrow{0}_{2} 3$ OH NO_{2}	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, <i>J</i> = 4.96 Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H), 7.20-7.18 (m, 2H, Ar-H), 6.02 (d, 1H, <i>J</i> = 5.04 Hz, O-H), 5.26-5.22 (m, 1H, C ₇ -H), 4.83-4.79 (m, 1H, C ₈ -H), 4.58-4.52 (m, 1H, C ₈ -H), 2.31 (s, 3H, C ₉ -H). 1-(4-methoxyphenyl)-2-nitroethan-1-ol (Method C, prepared from 1-(4- methoxyphenyl)-2-nitroethan-1-one, colorless liquid). ¹ H NMR (400 MHz,
$CI \xrightarrow{2}_{3} 4$ $2i$ i OH $1 \xrightarrow{6}_{5} 8} NO_{2}$ g $2j$ $2j$ i	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, $J = 4.96$ Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H), 7.20-7.18 (m, 2H, Ar-H), 6.02 (d, 1H, $J =$ 5.04 Hz, O-H), 5.26-5.22 (m, 1H, C ₇ -H), 4.83-4.79 (m, 1H, C ₈ -H), 4.58-4.52 (m, 1H, C ₈ -H), 2.31 (s, 3H, C ₉ -H). 1-(4-methoxyphenyl)-2-nitroethan-1-ol (Method C, prepared from 1-(4- methoxyphenyl)-2-nitroethan-1-one, colorless liquid). ¹ H NMR (400 MHz, CDCl ₃) δ /ppm 7.36-7.33 (m, 2H, Ar-H),
$CI \xrightarrow{2}_{3} 4$ $2i$ i i i i i i i i i	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, $J = 4.96$ Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H), 7.20-7.18 (m, 2H, Ar-H), 6.02 (d, 1H, $J =$ 5.04 Hz, O-H), 5.26-5.22 (m, 1H, C ₇ -H), 4.83-4.79 (m, 1H, C ₈ -H), 4.58-4.52 (m, 1H, C ₈ -H), 2.31 (s, 3H, C ₉ -H). 1-(4-methoxyphenyl)-2-nitroethan-1-ol (Method C, prepared from 1-(4- methoxyphenyl)-2-nitroethan-1-one, colorless liquid). ¹ H NMR (400 MHz, CDCl ₃) δ /ppm 7.36-7.33 (m, 2H, Ar-H), 6.96-6.93 (m, 2H, Ar-H), 5.45-5.42 (m,
$CI \xrightarrow{2}_{3} 4$ $2i$ i i i i i i i i i	colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.49-7.43 (m, 4H, Ar-H), 6.19 (d, 1H, $J = 4.96$ Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H), 4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m, 1H, C ₈ -H). 2-nitro-1-(p-tolyl)ethan-1-ol (Method D, prepared from 4-methylbenzaldehyde, colorless liquid). ¹ H NMR (400 MHz, DMSO) δ /ppm 7.34-7.32 (m, 2H, Ar-H), 7.20-7.18 (m, 2H, Ar-H), 6.02 (d, 1H, $J =$ 5.04 Hz, O-H), 5.26-5.22 (m, 1H, C ₇ -H), 4.83-4.79 (m, 1H, C ₈ -H), 4.58-4.52 (m, 1H, C ₈ -H), 2.31 (s, 3H, C ₉ -H). 1-(4-methoxyphenyl)-2-nitroethan-1-ol (Method C, prepared from 1-(4- methoxyphenyl)-2-nitroethan-1-one, colorless liquid). ¹ H NMR (400 MHz, CDCl ₃) δ /ppm 7.36-7.33 (m, 2H, Ar-H), 6.96-6.93 (m, 2H, Ar-H), 5.45-5.42 (m, 1H, C ₇ -H), 4.66-4.59 (m, 1H, C ₈ -H), 4.52-

ОН	2-nitro-1-(4-
$1 \frac{6}{10} \frac{17}{100} \text{NO}_2$	(trifluoromethyl)phenyl)ethan-1-ol
$9 \begin{bmatrix} 5 \\ 8 \end{bmatrix}$	(Method C, prepared from 1-(4-
$F_{3}C^{2}$ $\frac{4}{3}$	bromophenyl)-2-nitroethan-1-one,
21	coreless liquid). ¹ H NMR (400 MHz,
	DMSO) δ/ppm 7.76-7.74 (m, 2H, Ar-H),
	7.70-7.68 (m, 2H, Ar-H), 6.33 (d, 1H, J =
	4.96 Hz, O-H), 5.41-5.37 (m, 1H, C ₇ -H),
	4.95-4.91 (m, 1H, C ₈ -H), 4.65-4.59 (m,
	1H, C ₈ -H).
ОН	1-(4-fluorophenyl)-2-nitroethan-1-ol
$1 \stackrel{6}{\longrightarrow} 1 \stackrel{7}{\longrightarrow} NO_2$	(Method C, prepared from 1-(4-
	fluorophenyl)-2-nitroethan-1-one.
F^{2} $\frac{4}{3}$	colorless liquid). ¹ H NMR (400 MHz,
2m	DMSO) δ/ppm 7.51-7.47 (m, 2H, Ar-H),
	7.23-7.18 (m, 2H, Ar-H), 6.14 (d, 1H, $J =$
	4.96 Hz, O-H), 5.31-5.26 (m, 1H, C ₇ -H),
	4.86-4.82 (m, 1H, C ₈ -H), 4.61-4.55 (m,
	1H, C ₈ -H).
ОН	1-(4-bromophenyl)-2-nitroethan-1-ol
$1 \xrightarrow{6} 7$ NO ₂	(Method C, prepared from 1-(4-
	bromophenyl)-2-nitroethan-1-one,
Br^{2} $\frac{4}{3}$	colorless liquid). ¹ H NMR (400 MHz,
2n	DMSO) δ/ppm 7.59-7.56 (m, 2H, Ar-H),
	7.42-7.40 (m, 2H, Ar-H), 6.19 (d, 1H, J =
	4.96 Hz, O-H), 5.29-5.25 (m, 1H, C ₇ -H),
	4.88-4.84 (m, 1H, C ₈ -H), 4.60-4.54 (m,
	1H, C ₈ -H).
ОН	N-(4-(1-hydroxy-2-
6 $\sqrt{7}$ NO_2	nitroethyl)phenyl)acetamide (Method C,
$\bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{i=1}^{N} \bigcup_{i$	prepared from N-(4-(2-
10^{9} N 2^{4}	nitroacetyl)phenyl)acetamide, colorless
H °	liquid). ¹ H NMR (400 MHz, DMSO)
20	δ/ppm 9.95 (s, 1H, N-H), 7.57-7.55 (m,
	2H, Ar-H), 7.36-7.34 (m, 2H, Ar-H), 6.01
	(d, 1H, $J = 4.92$ Hz, O-H), 5.22-5.20 (m,
	1H, C ₇ -H), 4.82-4.78 (m, 1H, C ₈ -H), 4.57-
	4.52 (m, 1H, C ₈ -H), 2.04 (s, 3H, C ₁₀ -H).
ОН	2-nitro-1-(4-nitrophenyl)ethan-1-ol
$1 \wedge \sqrt{7} NO_2$	(Method C, prepared from 2-nitro-1-(4-
	nitrophenyl)ethan-1-one, colorless liquid).
$O_2 N^2 \sqrt{4}$	¹ H NMR (400 MHz, DMSO) δ/ppm 8.26-
0	8.23 (m, 2H, Ar-H), 7.76-7.73 (m, 2H, Ar-
2р	H), 6.43 (d, 1H, <i>J</i> = 5 Hz, O-H), 5.46-5.42

	(m, 1H, C7-H), 4.97-4.93 (m, 1H, C8-H),
	4.68-4.61 (m, 1H, C ₈ -H).
он	1-(4-(<i>tert</i> -butyl)phenyl)-2-nitroethan-1-
12 1 NO2	ol (Method C, prepared from 1-(4-(tert-
	butyl)phenyl)-2-nitroethan-1-one,
9^{2} 3^{4}	colorless liquid). ¹ H NMR (400 MHz,
1 ['] 1 2q	DMSO) δ/ppm 7.42-7.36 (m, 4H, Ar-H),
	6.01 (s, 1H, O-H), 5.27-5.23 (m, 1H, C ₇ -
	H), 4.85-4.81 (m, 1H, C ₈ -H), 4.59-4.53 (m,
	1H, C ₈ -H), 1.29, (s, 9H, C ₁₀ , C ₁₁ , C ₁₂ -H).
СІ ОН	1-(2,4-dichlorophenyl)-2-nitroethan-1-
1^{6} 7 NO ₂	ol (Method D, prepared from 2,4-
	dichlorobenzaldehyde, colorless liquid).
Cl^{2}	¹ H NMR (DMSO, 400 MHz) δ/ppm 7.68-
21	7.65 (m, 2H, Ar-H), 7.53-7.50 (m, 1H, Ar-
	H), 6.40 (d, 1H, <i>J</i> = 5 Hz, O-H), 5.59-5.55
	(m, 1H, C ₇ -H), 4.85-4.81 (m, 1H, C ₈ -H),
	4.55-4.49 (m, 1H, C ₈ -H).
OH	1-(3,4-dichlorophenyl)-2-nitroethan-1-
$CI_{1} \sim 1^{7} NO_{2}$	ol (Method D, prepared from 3,4-
	dichlorobenzaldehyde, colorless liquid).
	¹ H NMR (400 MHz, DMSO) δ/ppm 7.73-
2s	7.72 (m, 1H, Ar-H), 7.66–7.64 (m, 1H, Ar-
	H), 7.47-7.44 (m, 1H, Ar-H), 6.31 (d, 1H,
	J = 5.04 Hz, O-H), 5.34-5.30 (m, 1H, C ₇ -
	H), 4.93-4.89 (m, 1H, C ₈ -H), 4.65-4.60 (m,
	1H, C ₈ -H).
10	1-(naphthalen-1-yl)-2-nitroethan-1-ol
¹¹ 9 OH	(Method C, prepared from 1-(naphthalen-
12^{1} 10^{1} 15^{1} NO_2	1-yl)-2-nitroethan-1-one, colorless liquid).
	¹ H NMR (DMSO, 400 MHz) δ/ppm 8.17-
3 2 +	8.15 (m, 1H, Ar-H), 8.01-7.99 (m, 1H, Ar-
21	H), 7.94-7.92 (m, 1H, Ar-H), 7.76-7.74 (m,
	1H, Ar-H), 7.67-7.62 (m, 1H, Ar-H), 7.60-
	7.54 (m, 2H, Ar-H), 6.30 (d, 1H, $J = 5.02$
	Hz O-H), 6.07-6.02 (m, 1H, C ₇ -H), 5.01-
	4.97 (m, 1H, C ₈ -H), 4.70-4.64 (m, 1H, C ₈ -
	Н).
9 6 7 NO	1-(naphthalen-2-yl)-2-nitroethan-1-ol
	(Method C, prepared from 1-(naphthalen-
	2-yl)-2-nitroethan-1-one, colorless liquid).
12 3	'H NMR (400 MHz, DMSO) δ/ppm 7.98-
2u	7.91 (m, 4H, Ar-H), 7.60 - 7.52 (m, 3H, 10.10)
	Ar-H), 6.25 (d, 1H, $J = 4.72$ Hz, O-H),

	5.47-5.43 (m, 1H, C7-H), 4.98-4. 94 (m,
	1H, C ₈ -H), 4.70-4.65 (m, 1H, C ₈ -H).
6 7 9	1-nitro-3-phenylpropan-2-ol (Method D,
1 1 5 8 NO ₂	prepared from 2-phenylacetaldehyde,
2 ⁴ ÓH	colorless liquid). ¹ H NMR (400 MHz,
3	DMSO) δ/ppm 7.37-7.16 (m, 5H, Ar-H),
20	5.51 (d, 1H, <i>J</i> = 5.84 Hz, O-H), 4.65-4.60
	(m, 1H, C ₉ -H), 4.40-4.29 (m, 2H, C ₈ -H,
	C ₉ -H), 2.81-2.71 (m, 2H, C ₇ -H).
OH 6 7 lo	1-nitro-4-phenylbutan-2-ol (Method D,
$1 $ $1 $ $15 $ $10 $ NO_2	prepared from 3-phenylpropanal, colorless
	liquid). ¹ H NMR (400 MHz, DMSO)
3	δ/ppm 7.32-7.17 (m, 5H, Ar-H), 5.45 (d,
2w	1H, J = 6.32 Hz, O-H), 4.73-4.69 (m, 1H,
	C ₁₀ -H), 4.42-4.36 (m, 1H, C ₁₀ -H), 4.14-
	4.07 (m, 1H, C ₉ -H), 2.77-2.60 (m, 2H, C ₇ -
	H), 1.78-1.64 (m, 2H, C ₈ -H).
OH 6 a la un	1-nitro-3-phenoxypropan-2-ol (Method
$1 \xrightarrow{15} 0 \xrightarrow{15} 7 \xrightarrow{15} 0 $	C, prepared from 1-nitro-3-
	phenoxypropan-2-one, coloriess liquid).
³ 5a	⁻ H NMR (400 MHZ, DMSO) 0/ppm 7.33-
	$I = \frac{1}{20} I =$
	11, 5.80 (d, $111, 5 = 5.04$ $112, 0-11), 4.80$
	H) $453-446$ (m 1H C ₀ -H) $407-397$ (m
	11 , 13 C NMR (DMSO 100 MHz)
	δ/npm 158.62 130.00 121.40 115.02
	79.53, 69.46, 67.28, HRMS Calcd. For
	$C_{9}H_{10}NO_{4}[M-H]^{-}$: 196.0615. Found:
	196.0619.
10	1-nitro-3-(o-tolyloxy)propan-2-ol
	(Method C, prepared from 1-nitro-3-(o-
	tolyloxy)propan-2-one, colorless liquid).
2 4	¹ H NMR (400 MHz, DMSO) δ/ppm 7.18-
³ 5b	7.14 (m, 2H, Ar-H), 6.93-6.84 (m, 2H, Ar-
	H), 5.85 (d, 1H, <i>J</i> = 5.68 Hz, O-H), 4.91-
	4.87 (m, 1H, C ₉ -H), 4.64-4.58 (m, 1H, C ₉ -
	H), 4.55-4.49 (m, 1H, C ₈ -H), 4.06-3.96 (m,
	2H, C ₇ -H), 2.18 (s, 3H, C ₁₀ -H). ¹³ C NMR
	(DMSO, 100 MHz) δ/ppm 156.64, 130.94,
	127.44, 126.45, 121.10, 111.82, 79.71,
	69.62, 67.39, 16.37. HRMS Calcd. For
	$C_{10}H_{12}NO_4[M-H]^-$: 210.0772. Found:
	210.0771.

10	1-(2-methoxyphenoxy)-3-nitropropan-
	2-ol (Method C, prepared from 1-(2-
$1 \xrightarrow{0} 0 \xrightarrow{0} NO_2$	methoxyphenoxy)-3-nitropropan-2-one,
	colorless liquid). ¹ H NMR (400 MHz,
³ 5c	DMSO) δ/ppm 7.01-6.87 (m, 4H, Ar-H),
	5.84-5.83 (s, 1H, O-H), 4.88-4.84 (m, 1H,
	C ₉ -H), 4.60-4.55 (m, 1H, C ₉ -H), 4.52-4.45
	(m. 1H. C ₈ -H), 4.03-3.94 (m. 2H. C ₇ -H),
	$3 35 (s 3H C_{10}-H)^{-13}C NMR (DMSO)$
	100 MHz δ/npm 149.80 148.14 122.21
	121 22 114 85 112 92 79 63 70 72
	67 38 56 04
	$\frac{1}{2}$
OH 40 6 Ja	Mothed C propagad from 1 pitro 2 (m
$10 1 0 0 0 NO_2$	(Method C, prepared from 1-intro-5-(in-
2 4	LUNIAD (400 MUZ DMSO) S/mm 7 20
³ 5d	7 16 (m 111 Ar 11) 6 70 6 74 (m 211 Ar
	7.10 (III, 1H, AI-H), 0.79-0.74 (III, 5H, AI-II) 5.85 (4.111, $L = 5.64$ Hz, O, II) 4.87
	H_{J} , 5.85 (d, 1H, $J = 5.04$ Hz, $O-H_{J}$, 4.87-
	$4.83 \text{ (m, 1H, C_9-H)}, 4.00-4.34 \text{ (m, 1H, C_9-H)}, 4.52 \text{ A} 45 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 \text{ A} 05 \text{ A} 04 \text{ (m, 1H, C_9-H)}, 4.05 (m, 1H, C_$
	H), $4.52-4.45$ (m, 1H, C_8 -H), $4.05-3.94$ (m,
	2H, C_7 -H), 2.29 (s, 3H, C_{10} -H). ¹³ C NMR
	(DMSO, 100 MHz) ð/ppm 158.63, 139.51,
	129.72, 122.14, 115.67, 112.03, 79.54,
	69.41, 67.29, 21.56.
OH	1-nitro-3-(p-tolyloxy)propan-2-ol
$1 \sqrt{5}$ NO_2	(Method C, prepared from 1-nitro-3-(p-
	tolyloxy)propan-2-one, colorless liquid).
	¹ H NMR (400 MHz, DMSO) δ/ppm 7.11-
Se	7.09 (m, 2H, Ar-H), 6.86-6.81 (m, 2H, Ar-
	H), 5.84 (d, 1H, <i>J</i> = 5.68 Hz, O-H), 4.87-
	4.83 (m, 1H, C ₉ -H), 4.59-4.54 (m, 1H, C ₉ -
	H), 4.51-4.44 (m, 1H, C ₈ -H), 4.01-3.92 (m,
	2H, C ₇ -H), 2.24 (s, 3H, C ₁₀ -H). ¹³ C NMR
	(DMSO, 100 MHz) δ/ppm 156.53, 130.32,
	130.09, 114.90, 79.55, 69.61, 67.31, 20.55.
	HRMS Calcd. For $C_{10}H_{12}NO_4[M-H]^-$:
	210.0772. Found: 210.0772.
ОН	1-(4-methoxyphenoxy)-3-nitropropan-
$1 \wedge 0 \wedge 8 \wedge NO_2$	2-ol (Method C, prepared from 1-(4-
	methoxyphenoxy)-3-nitropropan-2-one,
	colorless liquid). ¹ H NMR (400 MHz,
τ ο τ	DMSO) 8/ppm 6.92-6.86 (m, 4H, Ar-H),
	5.83 (d, 1H, J = 5.68 Hz, O-H), 4.87-4.83
	(m, 1H, C ₉ -H), 4.59-4.53 (m, 1H, C ₉ -H),

	450442 (m 1H C H) 200200 (m
	$7.50^{-7.75}$ (III, 111, C ₈ -11), 5.59-5.20 (III, 211 C II) 2.71 (c 211 C II) ¹³ C NMD
	$211, C_7$ - $n_j, 5.71$ (8, 5 n, C_{10} - n_j). "C NMR
	(DMSO, 100 MHZ) 0/ppm 134.11, 152.63,
	110.03, 113.09, /9.3/, /0.19, 0/.34, 53.83.
	HRMS Calcd. For $C_{10}H_{12}NO_5[M-H]$:
	226.0721. Found: 226.0728.
ОН	1-(4-fluorophenoxy)-3-nitropropan-2-ol
$1 \xrightarrow{6} 0 \xrightarrow{8} NO_2$	(Method C, prepared from 1-(4-
	fluorophenoxy)-3-nitropropan-2-one,
F^{2}_{3} 5g	colorless liquid). ¹ H NMR (400 MHz,
J - J	DMSO) δ/ppm 7.16-7.09 (m, 2H, Ar-H),
	7.01-6.95 (m, 2H, Ar-H), 5.86 (d, 1H, J =
	5.6 Hz, O-H), 4.88-4.84 (m, 1H, C ₉ -H),
	4.60-4.54 (m, 1H, C ₉ -H), 4.51-4.45 (m,
	1H, C ₈ -H), 4.03-3.95 (m, 2H, C ₇ -H). ¹³ C
	NMR (DMSO, 100 MHz) δ/ppm 157.16
	(d, J = 234.79 Hz), 155.00 (d, J = 1.96 Hz),
	116.44, 116.29 (d, $J = 13.85$ Hz), 79.47,
	70.21, 67.24. HRMS Calcd. For
	C ₉ H ₉ FNO ₄ [M-H] ⁻ : 214.0521. Found:
	214.0529.
	1-(4-chlorophenoxy)-3-nitropropan-2-ol
	(Method C, prepared from 1-(4-
	chlorophenoxy)-3-nitropropan-2-one,
	colorless liquid). ¹ H NMR (400 MHz,
3 5 1	DMSO) δ/ppm 7.37-7.31 (m, 2H, Ar-H),
	7.01-6.96 (m, 2H, Ar-H), 5.88 (d, 1H, J =
	5.64 Hz, O-H), 4.87-4.84 (m, 1H, C ₉ -H),
	4.60-4.55 (m, 1H, C ₉ -H), 4.52-4.45 (m,
	1H, C ₈ -H), 4.07-3.97 (m, 2H, C ₇ -H). ¹³ C
	NMR (DMSO, 100 MHz) δ/ppm 157.53,
	129.75, 125.10, 116.85, 79.42, 69.93,
	67.17. HRMS Calcd. For C ₉ H ₉ ClNO ₄ [M-
	H] ⁻ : 230.0226. Found: 230.0230.
ОН	1-nitro-3-(4-nitrophenoxy)propan-2-ol
$\stackrel{6}{\sim}$ O $\stackrel{8}{\sim}$ NO ₂	(Method C, prepared from 1-nitro-3-(4-
	nitrophenoxy)propan-2-one. colorless
$O_2 N^{\frac{1}{2}}$	liquid). ¹ H NMR (400 MHz. DMSO)
^{- 3} 5i	δ/ppm 8.25-8.21 (m. 2H. Ar-H). 7.20-7.16
	(m, 2H, Ar-H), 5.97 (d. 1H. $J = 5.56$ Hz
	O-H), 4.90-4.87 (m, 1H, C ₀ -H), 4.64-4 58
	$(m, 1H, C_0-H)$ 4 56-4 51 $(m, 1H, C_0-H)$
	4 19-4 18 (m 2H C ₇ -H) ¹³ C NMR
	$(DMSO 100 MHz) \delta/nnm 163 95 141 56$
	(Diviso, 100 miliz) 0/ppiii 105.95, 141.50,

	126.36, 115.63, 79.23, 70.43, 67.00.
	HRMS Calcd. For C ₉ H ₉ N ₂ O ₆ [M-H] ⁻ :
	241.0466. Found: 241.0471.
11	1-(naphthalen-1-yloxy)-3-nitropropan-
¹² OH	2-ol (Method C, prepared from 1-
13 16 0 8 NO_2	(naphthalen-1-yloxy)-3-nitropropan-2-
	one, colorless liquid). ¹ H NMR (400 MHz,
2 4 3 F:	DMSO) δ/ppm 8.27-8.25 (m, 1H, Ar-H),
5)	7.89-7.87 (m, 1H, Ar-H), 7.57-7.50 (m,
	3H, Ar-H), 7.45-7.41 (m, 1H, Ar-H), 6.98-
	6.97 (m, 1H, Ar-H), 5.99 (d, 1H, J = 5.48
	Hz, O-H), 5.03-4.99 (m, 1H, C9-H), 4.76-
	4.70 (m, 1H, C ₉ -H), 4.69-4.64 (m, 1H, C ₈ -
	H), 4.25-4.16 (m, 2H, C ₇ -H). ¹³ C NMR
	(DMSO, 100 MHz) δ/ppm 154.11, 134.49,
	127.87, 127.01, 126.61, 125.80, 125.33,
	122.26, 120.80, 105.73, 79.66, 69.91,
	67.35.

References

- [1] H. H. Nguyen and M. J. Kurth, Org. Lett. 2013, **15**, 362-365.
- [2] C. Rodríguez, W. Borzęcka, J. H. Sattler, W. Kroutil, I. Lavandera and V. Gotor, Org. Biomol. Chem. 2014, 12, 673-681.
- [3] M. Zhou, D. Dong, B. Zhu, H. Geng, Y. Wang and X. Zhang, *Org. Lett.* 2013, **15**, 5524-5527.

Name	Accession No.	Source	aa
YDR541c	AAB64983.1	Saccharomyces cerevisiae	344
YGL157w	NP_011358.3	Saccharomyces cerevisiae	347
YPL113c	NP_015212.1	Saccharomyces cerevisiae	396
YHR104w	NP_011972	Saccharomyces cerevisiae	327
YNL274c	NP_014125	Saccharomyces cerevisiae	350
YDR368w	NP_010656	Saccharomyces cerevisiae	312
YGL039w	NP_011476	Saccharomyces cerevisiae	348
YNL331c	NP_014068.1	Saccharomyces cerevisiae	376
Ymr226c	NP_013953.1	Saccharomyces cerevisiae	267
YOL151w	NP_014490.1	Saccharomyces cerevisiae	342
YAL060w	NP_009341.2	Saccharomyces cerevisiae	382
YOR120w	NP_014763.1	Saccharomyces cerevisiae	312
YGL185c	NP_011330.1	Saccharomyces cerevisiae	379
LtCR	XP_002554048.1	Lachancea thermotolerans	281
RasADH	EU485985	Ralstonia sp. DSMZ 6428	250
CgCR	XP_447302.1	Candida glabrata	310
KRED1-Pglu	AKP95857.1	Pichia glucozyma	252
SsCR	AF160799.1	Sporidiobolus salmonicolor	343
SeKRED	XP_018221648.1	Saccharomyces eubayanus	342
LbADH	CAD66648.1	Lactobacillus brevis	252
LkADH	WP_054768785.1	Lactobacillus kefiri	252
SyADH	EU427523.1	Sphingobium yanoikuyae	263
TdADH	XP_003678559.1	Torulaspora delbrueckii	342
KdoADH	CDO95209.1	Kluyveromyces dobzhanskii	342

Table S3. The details of genes used in this study.

Figure S1. SDS-PAGE analysis of *N*-terminal-His₆-SyADH, *N*-terminal-His₆-RasADH and *N*-terminal-His₆-YGL039w after IMAC purification. Coomassie staining. M: RealBand 3-color Regular Range Protein Marker (Sangon Biotech, China). Lane 1: *N*-terminal-His₆-SyADH. Lane 2: *N*-terminal-His₆-RasADH. Lane 3: *N*-terminal-His₆-YGL039w.

Figure S2. SDS-PAGE analysis of coexpression of RasADH and GDH. Coomassie staining. M: RealBand 3-color Regular Range Protein Marker (Sangon Biotech, China). Lane 1: coexpression of RasADH and GDH using two gene-two plasmid method (plasmids pET28a-RasADH and pACYC-duet-GDH (MCS1)). Lane 2: coexpression of RasADH and GDH using two gene-one plasmid method (plasmid pRSF-duet-RasaDH (MCS1)-GDH (MCS2)). Lane 3: coexpression of RasADH and GDH using two gene-one plasmid method (plasmid pRSF-duet-GDH (MCS1)-RasADH (MCS2)).

YGL039w catalyzed reduction of 1a under different pHs

To a solution of 10 mM ketone substrate, 20 mM glucose and 0.2 mM NADP⁺ in 50 mM buffer of appropriate pHs, were added YGL039w and glucose dehydrogenase (GDH) (0.3 mg/mL each, 7.4 μ M YGL039w and 7.3 μ M GDH). The 1.5 mL Eppendorf tube containing 1 mL of the above mixture was shaken at 180 rpm and 30 °C. After 0.5 h, the reaction mixture was extracted with EtOAc (5 mL) and the organic layer was concentrated and subjected to ¹H NMR analysis.

Figure S3. ¹H NMR spectra of the products obtained by incubation of YGL039w with ketone 1a. A. NMR spectrum of authentic racemic alcohol 2a. B. NMR spectrum of YGL039w (0.3 mg/mL, 7.4 μ M) catalyzed reduction of 1a for 0.5 h at pH 5. C. NMR spectrum of authentic ketone 1a. D. NMR spectrum of authentic benzoic acid 3a.

Figure S4. ¹H NMR spectrum of the products obtained by incubation of YGL039w (0.3 mg/mL, 7.4 μ M) with ketone 1a for 0.5 h at pH 5 (spectrum B from Figure S3 with integration).

Calculation of reaction conversion using ¹H NMR:

As shown in Figure S3, we can assign signals in the ¹H NMR spectrum of the reaction mixture (spectrum B) by comparing this spectrum to the ¹H NMR spectra of **1a**, **2a** or **3a** (spectra C, A or D).

The spectrum in Figure S4 is the same spectrum B of Figure S3, but with integrations for certain signals. With the above knowledge, we assign signal c (with integration of 1) as H^{IV} (1 proton) of the desired product **2a**, signal b (with integration of 0.22) as H^{IV} (2 protons) of unreacted ketone **1a**, signal a (with integration of 0.40) as the sum of H^{I} (2 protons) of unreacted **1a** and H^{I} (2 protons) of the side product **3a**.

Hence, the conversion of **2a** is calculated as follows: 1 / (1 + 0.40/2) * 100% = 83%. The percentage of remaining **1a** is calculated as follows: (0.22/2) / (1 + 0.40/2) * 100% = 9%. The percentage of the side product **3a** is calculated as follows: (0.4/2 - 0.22/2) / (1 + 0.40/2) * 100% = 8%.

		v		1			
Entry	pН	Enzyme loading	Reaction	1a [%]	2a [%]	3 a [%]	
		(mg/mL)	time (h)				
1	4	0.3	0.5	35	64	1	
2	5	0.3	0.5	9	83	8	
3	6	0.3	0.5	25	71	4	
4	7	0.3	0.5	24	73	3	

Table S4. YGL039w catalyzed reduction of 1a under different pHs

5	8	0.3	0.5	40	60	0
6	5	1	1	0	>99	0

Screen KREDs against reduction of ketone 1a

To a solution of 10 mM ketone substrate, 20 mM glucose and 0.2 mM NADP⁺ in 50 mM citric acid buffer (pH 5.0), were added KRED and glucose dehydrogenase (GDH) (1 mg/mL each enzyme). The 1.5 mL Eppendorf tube containing 1 mL of the above mixture was shaken at 180 rpm and 30 °C. After 1 h, the reaction mixture was extracted with EtOAc (5 mL) and the organic layer was concentrated and subjected to chiral HPLC analyses. The absolute configuration of the product was determined by comparing the elution order in chiral HPLC with known data.

Entry	Enzyme	Conversion [%]	ee of 2a [%]
1	YGL039w	>99	99 (S)
2	YGL157w	54	93 (<i>S</i>)
3	YNL274c	39	84 (<i>S</i>)
4	SsCR	86	79 (<i>S</i>)
5	YDR368w	27	65 (<i>S</i>)
6	YHR104w	28	54 (<i>S</i>)
7	YNL331c	55	racemic
8	RasADH	>99	98 (<i>R</i>)
9	YOL151w	34	62 (<i>R</i>)
10	YDR541c	21	59 (<i>R</i>)
11	Ymr226c	23	33 (<i>R</i>)
12	YPL113c	33	28 (R)
13	YOR120w	23	24 (<i>R</i>)
14	YAL060w	61	20 (<i>R</i>)

Table S5. Screen KREDs against reduction of ketone 1a

YGL039w and RasADH catalyzed reduction of class I ketones (1) in analytical scale

To a solution of 10 mM ketone substrate, 20 mM glucose and 0.2 mM NADP⁺ in 50 mM citric acid buffer (pH 5.0), were added KRED and glucose dehydrogenase (GDH) (appropriate concentrations as indicated in the following Table S6). The 1.5 mL Eppendorf tube containing 1 mL of the above mixture was shaken at 180 rpm and 30 °C. After certain amounts of time, the reaction mixture was extracted with EtOAc (5 mL) and the organic layer was concentrated and subjected to ¹H NMR and chiral HPLC analyses.

The ee of the products was determined using chiral HPLC and the absolute configuration of certain products was determined by comparing the elution order in chiral HPLC with known data (Table S7).

Table S6. YGL039w and RasADH catalyzed synthesis of β -nitro alcohols 2.

		YGL0	39w		RasADH			
Substrate	1 [%] ^[a]	2 [%] ^[a]	3 [%] ^[a]	ee of 2 [%] ^[b]	1 [%]	2 [%]	3 [%]	ee of 2
								[70]
1a , R = H	0	>99	0	99, S ^[c]	0	>99	0	98, <i>R</i>
1b , R = <i>o</i> -Cl	37	63	0	90, <i>N.D</i> . ^[g]	0	>99	0	>99,
1c , R = <i>o</i> -Me	88 (69 ^[d])	12 (31 ^[d])	0 (0 ^[d])	74, <i>S</i>	52 (16 ^[e])	48 (81 ^[e])	0 (3 ^[e])	>99, <i>R</i>
1d , R = <i>o</i> -OMe	10	50	40	31, <i>S</i>	2	79	19	84, <i>R</i>
1e , R = <i>m</i> -Cl	27	73	0	29, S	53 (28 ^[e])	47 (72 ^[e])	0 (0 ^[e])	96, R
1f , R = <i>m</i> -Me	5	95	0	93, <i>S</i>	62 (6 ^[e])	38 (94 ^[e])	0 (0 ^[e])	91, <i>R</i>
1g , R = <i>m</i> -OMe	0	73	27	92, <i>S</i>	18	59	23	79, <i>R</i>
1h , R = <i>m</i> -CF ₃	13	87	0	92, <i>S</i>	61 (0 ^[e])	39 (>99 ^[e])	0 (0 ^[e])	85, <i>R</i>
1i , R = <i>p</i> -Cl	0	>99	0	98, <i>S</i>	2	98	0	98, R
1j , R = <i>p</i> -Me	4	96	0	96, S	0	>99	0	86, <i>R</i>
	I				l			

1k , R = <i>p</i> -OMe	0	96	4	>99, <i>S</i>	0	>99	0	99, R
11 , R = <i>p</i> -CF ₃	45	43	12	72, <i>S</i>	9	85	6	98, <i>R</i>
1m , R = <i>p</i> -F	7	93	0	68, <i>S</i>	15	85	0	96, <i>R</i>
1n , R = <i>p</i> -Br	0	76	24	96, <i>S</i>	4	86	10	98, <i>R</i>
10 , R = <i>p</i> - NHC(O)CH ₃	20	55	25	96, <i>S</i>	1	99	0	89, <i>R</i>
1p , $R = p$ -NO ₂	9	62	29	77, S	0	88	12	98, <i>R</i>
$\mathbf{1q}, \mathbf{R} = p - t\mathbf{Bu}$	65	35	0	66, S	69	31	0	>99, <i>R</i>
	20	80	0	32, <i>S</i>	29 (0 ^[f])	71 (>99 ^[f])	0 (0 ^[f])	99, R
	46	45	9	82, <i>S</i>	34	55	11	92, <i>R</i>
NO ₂	82	18	0	37, <i>R</i>	95 (63 ^[d])	5 (37 ^[d])	0 (0 ^[d])	92, <i>R</i>
O NO ₂ 1u	70 (26 ^[d])	30 (74 ^[d])	0 (0 ^[d])	99, S	74 (14 ^[e])	26 (86 ^[e])	0 (0 ^[e])	96, <i>R</i>
NO ₂ 1v	18	82	0	83, <i>R</i>	35	65	0	17, <i>S</i>

Unless otherwise stated, the reaction was carried out with 10 mM ketone substrate, 20 mM glucose, 0.2 mM NADP⁺, 1 mg/mL KRED (24.7 μ M YGL039w or 34.6 μ M RasADH) and 1 mg/mL GDH (24.3 μ M) in 1 mL of 50 mM citric acid, pH 5.0 at 30 °C and 180 rpm for 1 h. [a] The reaction conversion was determined using ¹H NMR. [b] The ee was determined using chiral HPLC. [c] The absolute configuration was determined by comparing the elution order in chiral HPLC with known data. [d] The reaction was performed with 5 mg/mL KRED (123.7 μ M YGL039w or 173.1 μ M RasADH) and 1 mg/mL GDH (24.3 μ M) for 2 h. [e] The reaction was performed with 3 mg/mL KRED (74.2 μ M YGL039w or 103.8 μ M RasADH) and 1 mg/mL GDH (24.3 μ M) for 2 h. [f] The reaction was performed with 1 mg/mL KRED (24.7 μ M YGL039w or 34.6 μ M RasADH) and 1 mg/mL (24.3 μ M) GDH for 2 h. [g] The absolute configuration was not determined (*N.D.*).

Table S7. Chiral HPLC methods utilized for the determination of ee of alcohols 2

Product	Chiral HPLC method
	Chiracel [®] OD-H, 250×4.6 mm column, hexane/2-propanol 90:10, 0.8 mL/min flow rate, 215 nm UV lamp, 24 °C, t _R = 16.4 min, t _R '= 20.5 min ^[1] .
	Chiracel [®] IB, 250×4.6 mm column, hexane/2-propanol 99:1, 0.8 mL/min flow rate, 215 nm UV lamp, 24 °C, t _R = 26.8 min, t _R ' = 28.5 min.
Me OH * NO ₂ 2c	Chiracel [®] OD-H, 250×4.6 mm column, hexane/2-propanol 90:10, 0.6 mL/min flow rate, 215 nm UV lamp, 24 °C, t _R = 18.4 min, t _R ' = 20.0 min ^[1] .
OMe OH * NO ₂ 2d	Chiracel [®] OD-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 0.8 mL/min flow rate, 215 nm UV lamp, 24 °C, $t_R =$ 14.2 min, t_R = 17.4 min ^[1] .
	Chiracel [®] OD-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 0.5 mL/min flow rate, 215 nm UV lamp, 25 °C, $t_R =$ 12.5 min, $t_R' = 16.0 \text{ min.}^{[2]}$
Me NO ₂	Chiracel [®] OD-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 0.5 mL/min flow rate, 215 nm UV lamp, 22 °C, $t_R = 22.6 \text{ min}, t_R = 26.8 \text{ min}.^{[2]}$

Chiracel[®] OD-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 1 mL/min flow rate, 215 nm UV lamp, 24 °C, $t_R =$ 24.5 min, $t_R^2 = 32.9 \text{ min.}^{[3]}$

Chiracel[®] OD-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 0.8 mL/min flow rate, 215 nm UV lamp, 24 °C, $t_R =$ 11.3 min, $t_R = 13.2 \text{ min.}^{[4]}$

Chiracel[®] OD-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 0.8 mL/min flow rate, 215 nm UV lamp, 24 °C, $t_R = 16.3 \text{ min}, t_R^2 = 21.0 \text{ min}.^{[3]}$

Chiracel[®] OD-H, 250 × 4.6 mm column, hexane/2-propanol 85:15, 0.5 mL/min flow rate, 215 nm UV lamp, 25 °C, $t_R = 18.6 \text{ min}, t_R^2 = 23.5 \text{ min}.^{[2]}$

Chiracel[®] OD-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 1 mL/min flow rate, 215 nm UV lamp, 22 °C, $t_R =$ 18.8 min, $t_R = 24.1 \text{ min.}^{[5]}$

 $\begin{array}{l} \mbox{Chiracel}^{\circledast} \mbox{ OD-H, 250 \times 4.6 mm column, hexane/2-propanol} \\ \mbox{85:15, 0.8 mL/min flow rate, 215 nm UV lamp, 26 °C, t_R=9.2 } \\ \mbox{min, t_R}^{=} \mbox{11.5 min.}^{[2]} \end{array}$

Chiracel[®] OD-H, 250 × 4.6 mm column, hexane/2-propanol 85:15, 0.5 mL/min flow rate, 215 nm UV lamp, 26 °C, $t_R = 16.1 \text{ min}, t_R^2 = 18.7 \text{ min}.$ ^[2]

Chiracel[®] OD-H, 250 × 4.6 mm column, hexane/2-propanol 90:10, 1 mL/min flow rate, 215 nm UV lamp, 24 °C, $t_R = 15.2 \text{ min}, t_R^2 = 20.3 \text{ min}.^{[5]}$

Chiracel[®] IC, 250×4.6 mm column, hexane/2-propanol 80:20, 0.8 mL/min flow rate, 230 nm UV lamp, 24 °C, t_R = 33.9 min, t_R' = 40.6 min.^[6]

Chiracel[®] OD-H, 250×4.6 mm column, hexane/2-propanol 90:10, 1 mL/min flow rate, 215 nm UV lamp, 22 °C, t_R = 24.7 min, t_R' = 32.3 min.^[5]

References

- [1] Y. ji, G. Qi and Z. M. A. Judeh, Eur. J. Org. Chem. 2011, 25, 4892-4898.
- [2] D. Qin, W. Lai, D. Hu, Z. Chen, A. Wu, Y. Ruan, Z. Zhou and H. Chen, *Chem. Eur. J.* 2012, 18, 10515-10518.
- [3] B. Qin, X. Xiao, X. Liu, J. Huang, Y. Wen and X. Feng, J. Org. Chem. 2007, 72, 9323-9328.
- [4] F. Xu, C. Lei, L. Yan, J. Tu and G. Li, Chirality, 2015, 27, 761-765.

[5] A. Noole, K. Lippur, A. Metsala, M. Lopp and T. Kanger, J. Org. Chem. 2010, 75, 1313-1316.

- [6] A. Das, R. I. Kureshy, P. S. Subramanian, N. H. Khan, S. H. R. Abdi and H. C. Bajaja, *Catal. Sci. Technol.* 2014, 4, 411-418.
- [7] Y. Zhou and Y. Gong, Eur. J. Org. Chem. 2011, 30, 6092-6099.
- [8] J. D. White and S. Shaw, Cheminform. 2013, 44, 19.
- [9] O. Soltani, A. Ariger, H. V and E. M. Carreira, Org. Lett. 2010, 12, 2893-2895.
- [10] G. Lu, F. Zheng, L. Wang, Y. Guo, X. Li, X. Cao, C. Wang, H. Chi, Y. Dong and Z. Zhang,

Tetrahedron: Asymmetry, 2016, **27**, 732-739.

[11] D. Scharnagel, F. Prause, J. Kaldun, R. G. Haase and M. Breuning, *Chem. Commun.* 2014, **50**, 6623-6625.

Screen KREDs against reduction of ketone 4a

To a solution of 10 mM ketone substrate, 20 mM glucose and 0.2 mM NADP⁺ in 50 mM citric acid buffer (pH 5.0), were added KRED and glucose dehydrogenase (GDH) (1 mg/mL each enzyme). The 1.5 mL Eppendorf tube containing 1 mL of the above mixture was shaken at 180 rpm and 30 °C. After 1 h, the reaction mixture was extracted with EtOAc (5 mL) and the organic layer was concentrated and subjected to chiral HPLC analyses. The absolute configuration of the product was determined by comparing the elution order in chiral HPLC with known data.

Table S8. Screer	ı KREDs	against	reduction	of ketone	4 a
------------------	---------	---------	-----------	-----------	------------

Entry	Enzyme	ee of 5a [%] ^[a]
1	YGL039w	96
2	LbADH	94
3	SeKRED	87
4	YAL060w	83
5	YGL185c	78
6	YNL331c	64
7	Ymr226c	34
8	LkADH	25
9	YOL151w	16
10	KRED1-Pglu	racemic
11	YOR120w	racemic
12	LtCR	racemic
13	YDR541c	racemic
14	SyADH	96
15	TdADH	90
16	KdoADH	71
17	RasADH	58
18	CgCR	39
19	YDR368w	30
20	YPL113c	19

[a] The major enantiomer formed in entries 1-9 (colored in red) eluted first ($t_R = 9.6$ min) in chiral HPLC, while the major enantiomer formed in entries 14-20 (colored in blue) eluted second ($t_R = 11.9$ min) in chiral HPLC.

YGL039w and SyADH catalyzed reduction of class II ketones (4) in analytical scale

To a solution of 10 mM ketone substrate, 20 mM glucose and 0.2 mM NADP⁺ in 50 mM citric acid buffer (pH 5.0), were added KRED and glucose dehydrogenase (GDH) (appropriate concentrations as indicated in the following Table S9). The 1.5 mL Eppendorf tube containing 1 mL of the above mixture was shaken at 180 rpm and 30 °C. After certain amounts of time, the

reaction mixture was extracted with EtOAc (5 mL) and the organic layer was concentrated and subjected to ¹H NMR and chiral HPLC analyses.

The ee of the products was determined using chiral HPLC and the absolute configuration of certain products was determined by comparing the elution order in chiral HPLC with known data (Table S10).

		YGI	.039w			SyA	DH	
Substrate	4	5	6	ee of 5	4 [%]	5 [%]	6 [%]	ee of
	[%] ^[a]	[%] ^[a]	[%] ^[a]	[%] ^[b]				5 [%]
4a , R = H	0	>99	0	96, <i>R</i> ^[c]	0	75	25	96, S
4b , R = <i>o</i> -Me	10	90	0	94, <i>R</i>	4	80	16	57, S
4c , R = <i>o</i> -OMe	0	64	36	98, <i>R</i>	0	>99	0	97, S
4d , R = <i>m</i> -Me	0	83	17	85, <i>R</i>	0	>99	0	77, S
4e , R = <i>p</i> -Me	16	75	9	99, R	0	95	5	86, <i>S</i>
$\mathbf{4f}, \mathbf{R} = p \cdot \mathbf{OMe}$	0	>99	0	98, <i>R</i>	0	>99	0	97, S
4g , R = <i>p</i> -F	0	83	17	95, R	0	88	12	98, <i>S</i>
4h , R = <i>p</i> -Cl	0	83	17	92, <i>R</i>	0	77	23	94, <i>S</i>
4i , R = <i>p</i> -NO ₂	0	93	7	55, R	0	74	26	>99, S
	10	49	41	98, <i>R</i>	58	21	21	93, <i>S</i>

Table S9.	. YGL039w	and SvADH	catalyzed s	vnthesis of	B-nitro alcohols 5.

The reaction was carried out with 10 mM ketone substrate, 20 mM glucose, 0.2 mM NADP⁺, 1 mg/mL KRED (24.7 μ M YGL039w or 33.2 μ M SyADH) and 1 mg/mL GDH (24.3 μ M) in 1 mL of 50 mM citric acid, pH 5.0 at 30 °C and 180 rpm for 1 h. [a] The reaction conversion was determined using ¹H NMR. [b] The ee was determined using chiral HPLC. [c] The absolute configuration of **5c** was determined by ¹H NMR spectroscopy using Mosher's reagent (see Figure S5, S6, and the associated discussion for details); the absolute configuration of the rest of compounds (**5a**, **5b**, **5d** to **5j**) was assigned by analogy.

Table S10. Chiral HPLC methods utilized for the determination of ee of alcohols 5

Determination of the absolute configuration of alcohols 5.

The absolute configuration of biosynthesized **5c** was determined by ¹H NMR spectroscopy using Mosher's reagent.

Scheme S5. Synthesis of the Mosher esters S7

To an ice-cooled solution of enantioenriched **5c** (227 mg, 1 mmol, 1 equiv.) and NiCl₂ • $6H_2O$ (237 mg, 1 mmol, 1 equiv.) in MeOH (2 mL) was add NaBH₄ (114 mg, 3 mmol, 3 equiv.) slowly, and the resulting mixture was stirred at the same temperature until the nitro alcohol was completely consumed monitored by TLC. Then (Boc)₂O (264 mg, 1.2 mmol, 1.2 equiv.) was added and the reaction was monitored by TLC. After completion of the reaction, the mixture was filtered and the filtrate was concentrated. The desired product **S6** was purified by flash chromatography on silica.

To an ice-cooled solution of **S6** (97 mg, 0.34 mmol, 1 equiv.), DCC (140 mg, 0.68 mmol, 2 equiv.), and DMAP (4.8 mg, 0.04 mmol, 0.12 equiv.) in DCM (1.5 mL) was added dropwise a solution of (R)-(-)-alpha-methoxyphenylacetic acid (61 mg, 0.37 mmol, 1.1 equiv.) in DCM (1 mL). The resulting mixture was stirred overnight and filtered. The filtrate was concentrated and the desired product **S7** was purified by flash chromatography on silica.

When (*R*)-**S6** and (*S*)-**S6** were coupled with *R*-Mosher's acid separately, diastereomeric esters (*R*,*R*)-**S7** and (*S*,*R*)-**S7** were generated, respectively. In ¹H NMR spectra, due to the shielding effect of the phenyl ring from the Mosher's acid part (**reference:** *Tetrahedron* **2005**, *64*, 8700-8708.), the methoxy protons H^A on the phenyl ring of ester (*R*,*R*)-**S7** would be shifted to upfield compared to the corresponding methoxy protons H^{A'} of ester (*S*,*R*)-**S7** (see below two structures). On the other hand, the Boc protons H^{B'} of ester (*S*,*R*)-**S7** would be shifted to upfield compared to the corresponding Boc protons H^{B'} of ester (*R*,*R*)-**S7**.

Accordingly, the enantioenriched nitro alcohols **5c** from the YGL039w-catalyzed and SyADHcatalyzed reactions were reduced, Boc-protected, and coupled with *R*-Mosher's acid to give the corresponding esters, which we temporarily named as (*YGL039w*,*R*)-**S7** and (*SyADH*,*R*)-**S7**, respectively. We then acquired the ¹H NMR spectra of pure (*YGL039w*,*R*)-**S7**, pure (*SyADH*,*R*)-**S7**, and a mixture of (*YGL039w*,*R*)-**S7** and (*SyADH*,*R*)-**S7** (approximately 2:3 molar ratio).

With the knowledge regarding the above described ¹H NMR-based method, we analyzed and the acquired spectra and determined the configuration of the enzymatic products 5c from the YGL039w-catalyzed and SyADH-catalyzed reduction reactions as *R* and *S*, respectively (Figure S5 and S6).

It is worth emphasizing that one key thing we have done for this experiment was acquiring the ¹H NMR spectrum of a mixture of (*YGL039w*,*R*)-S7 and (*SyADH*,*R*)-S7 with the known molar ratio, because it allows us unambiguously identify which peak is coming from (*YGL039w*,*R*)-S7 or (*SyADH*,*R*)-S7.

The absolute configuration of products 5a, 5b, 5d to 5j was then assigned by analogy.

f1 (ppm)

Figure S5. Determination of absolute configuration of **5c** by ¹H NMR spectroscopy using Mosher's reagent, zoom-in the Boc region. Trace I: ¹H NMR spectrum of pure (*YGL039w*,*R*)-**S7**. Trace II: ¹H NMR spectrum of a mixture of (*YGL039w*,*R*)-**S7** and (*SyADH*,*R*)-**S7** (approximately 2:3 molar ratio). Trace III: ¹H NMR spectrum of pure (*SyADH*,*R*)-**S7**.

Figure S6. Determination of absolute configuration of **5c** by ¹H NMR spectroscopy using Mosher's reagent, zoom-in the region of methoxy on the phenyl ring. Trace I: ¹H NMR spectrum of pure (*YGL039w*,*R*)-**S7**. Trace II: ¹H NMR spectrum of a mixture of (*YGL039w*,*R*)-**S7** and (*SyADH*,*R*)-**S7** (approximately 2:3 molar ratio). Trace III: ¹H NMR spectrum of pure (*SyADH*,*R*)-**S7**.

Product	Isolated	NMR and HRMS	Optical
	yield (%)		rotation
10 OMa OH (5	40	¹ H NMR (400 MHz, CDCl ₃)	$[\alpha]_{25}^{D} =$
$\begin{array}{c} \text{Olive} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $		δ/ppm 7.01-6.90 (m, 4H, Ar-H),	11.79 (<i>c</i> =
2 4 7 9 112 12		5.33-5.31 (m, 1H, N-H), 4.15-	0.5, DCM)
3 (<i>R</i>)- S6		4.10 (m, 1H, C ₈ -H), 4.08-4.05	
from YGL039w-catalyzed reaction		(m, 1H, C ₇ -H), 4.00-3.94 (m, 1H,	
		C ₇ -H), 3.88 (s, 3H, C ₁₀ -H), 3.53-	
		3.47 (m, 1H, C₀-H), 3.34-3.28	
		(m, 1H, C ₉ -H), 1.47 (s, 9H, C _{13, 14,}	
		₁₅ -H). ¹³ C NMR (CDCl ₃ , 100	
		MHz) δ/ppm 156.93, 149.77,	
		147.97, 122.20, 121.10, 115.00,	
		111.87, 79.60, 72.18, 69.36,	
		55.76, 43.47, 28.40. HRMS	
		Calcd. For	

Table S11. Characterization of S6 and S7

		$C_{15}H_{23}NNaO_{5}^{+}[M+Na^{+}]:$	
		320.1468. Found: 320.1466.	
10	42	¹ H NMR (400 MHz, CDCl ₃)	$[\alpha]_{25}^{D} = -$
$\begin{array}{c c} OMe & OH & 15 \\ 1 & 6 & O & \\ 1 & N_{11}O & 13 \end{array}$		δ/ppm 7.01-6.90 (m, 4H, Ar-H),	9.79 (<i>c</i> = 0.5,
$\begin{array}{c} 5 & 7 & 9 \\ 2 & 4 & 0 \end{array} \qquad \begin{array}{c} 12 \\ 14 \end{array}$		5.31-5.30 (m, 1H, N-H), 4.15-	DCM)
³ (S)-S6		4.10 (m, 1H, C ₈ -H), 4.08-4.05	
from SyADH-catalyzed reaction		(m, 1H, C ₇ -H), 4.00-3.96 (m, 1H,	
		C7-H), 3.88 (s, 3H, C10-H), 3.53-	
		3.47 (m, 1H, C9-H), 3.34-3.28	
		(m, 1H, C ₉ -H), 1.47 (s, 9H, C _{13, 14,}	
		¹⁵ -H). ¹³ C NMR (CDCl ₃ , 100	
		MHz) δ/ppm 156.94, 149.78,	
		147.97, 122.22, 121.10, 115.02,	
		111.87, 79.60, 72.18, 69.36,	
		55.76, 43.47, 28.40. HRMS	
		Calcd. For	
		$C_{15}H_{23}NNaO_5^+[M+Na^+]$:	
		320.1468. Found: 320.1466.	
22 21	89	¹ H NMR (400 MHz, CDCl₃)	$[\alpha]_{25}^{D} = -3.4$
²⁴ MeO, 18 20		δ/ppm 7.48-7.45 (m, 2H, Ar-H),	(<i>c</i> = 0.5,
10 16 19 15 19 10 15		7.36-7.29 (m, 3H, Ar-H), 7.00-	DCM)
		6.96 (m, 1H, Ar-H), 6.92-6.83	
2 4 7 9 112 12		(m, 2H, Ar-H), 6.74-6.71 (m, 1H,	
³ (<i>R</i> , <i>R</i>)- S7		Ar-H), 5.31-5.29 (m, 1H, C ₈ -H),	
from YGL039w-catalyzed reaction		5.28-5.24 (m, 1H, N-H), 4.84 (s,	
		1H, C ₁₇ -H), 4.07-4.03 (m, 1H,	
		C7-H), 4.00-3.96 (m, 1H, C7-H),	
		3.85 (s, 3H, C ₁₀ -H), 3.69-3.66	
		(m, 1H, C ₉ -H), 3.54-3.50 (m, 1H,	
		C ₉ -H), 3.47 (s, 3H, C ₂₄ -H), 1.48	
		(s, 9H, C _{13, 14, 15} -H). ¹³ C NMR	
		(CDCl ₃ , 100 MHz) 170.26,	
		156.05, 150.05, 147.64, 136.11,	
		128.68, 128.61, 127.07, 122.50,	
		120.93, 115.40, 112.10, 82.41,	
		79.34, 71.54, 69.24, 57.51,	
		55.73, 49.01, 41.24, 33.96,	
		28.44, 25.67, 25.01. HRMS	
		Calcd. For	
		$C_{24}H_{31}NNaO_7^+[M+Na^+]:$	
		468.1993. Found: 468.1990.	

22	80	¹ H NMR (400 MHz, CDCl ₃)	$[\alpha]_{25}^{D} = -$
²⁴ MeO, 18 20		δ/ppm 7.49-7.46 (m, 2H, Ar-H),	43.77 (<i>c</i> =
10 17 19 10 10 10 10 10 10 10 10		7.42-7.37 (m, 3H, Ar-H), 7.02-	0.5, DCM)
$\begin{array}{c c} OMe O & O & 15 \\ 1 & 6 & O & H \\ 1 & 0 & N & N_{11}O \\ 1 & 0 & 14 \end{array}$		6.97 (m, 1H, Ar-H), 6.93-6.91	
2 5 7 8 9 12 12		(m, 3H, Ar-H), 5.29-5.24 (m, 1H,	
(S. R)- S7		N-H), 4.81 (s, 1H, C ₁₇ -H), 4.75-	
from SyADH-catalyzed reaction		4.63 (m, 1H, C ₈ -H), 4.21-4.14	
		(m, 2H, C ₇ -H), 3.88 (s, 3H, C ₁₀ -	
		H), 3.54-3.46 (m, 1H, C ₉ -H),	
		3.44 (s, 3H, C ₂₄ -H), 3.36-3.29	
		(m, 1H, C ₉ -H), 1.43 (s, 9H, C _{13, 14,}	
		₁₅ -H). ¹³ C NMR (CDCl ₃ , 100	
		MHz) 170.16, 155.76, 150.10,	
		147.83, 136.27, 128.92, 128.79,	
		127.18, 122.52, 120.97, 115.48,	
		112.24, 82.30, 79.37, 71.91,	
		69.35, 57.36, 55.82, 41.10,	
		28.17. HRMS Calcd. For	
		$C_{24}H_{31}NNaO_7^+[M+Na^+]$:	
		468.1993. Found: 468.1991.	

YGL039w, RasADH, and SyADH catalyzed reduction in preparative scale using cell-free extract (CFE)

The preparative scale reaction was carried out with 250 mg ketone substrate, 1 g glucose, 50 mg NADP⁺, 35 mL 15% (w/v) cell-free extract (CFE) of KRED, 10 mL 15% (w/v) CFE of GDH and 5 mL DMSO at 30 °C and 600 rpm for certain amounts of time (monitored by TLC). Silica gel was added to the reaction mixture and subjected to centrifugation. The supernatant was extracted with EtOAc. The organic layer was then washed with brine and dried with anhydrous Na₂SO₄, then filtered, and the filtrate was evaporated to dryness. The product was purified by flash chromatography (silica gel, petroleum ether: EtOAc = 8:1 for **2a**, **2i** and **2k**; dichloromethane for **5a** to **5j**). The ee of the products was determined using chiral HPLC. The absolute configuration was determined by comparing the sign of the optical rotation of the major enantiomer or the elution order in chiral HPLC with known data, or using the above-described Mosher's ester analysis.

 Table S12. Characterization of products from YGL039w catalyzed preparative scale

 reactions

Product	Isolated	NMR and HRMS	Ee (%)	Optical
	yield (%)			rotation
OH	44.3	¹ H NMR (DMSO, 400	97 (<i>S</i>)	$[\alpha]_{20}{}^{D} =$
		MHz) δ/ppm 7.47-7.44		42.44 (<i>c</i>
5 7 8		(m, 2H, Ar-H), 7.41-		= 1,
2 4		7.36 (m, 2H, Ar-H),		DCM)
° (S)-2a		7.34-7.30 (m, 1H, Ar-		(Ref.
		H), 6.11-6.10 (d, 1H, <i>J</i> =		$[\alpha]_{20}{}^{D} =$
		4.8 Hz, О-Н), 5.30-5.26		-41.6 for
		(m, 1H, C ₇ -H), 4.88-4.83		(<i>R</i>)-
		(m, 1H, C ₈ -H), 4.60-4.54		isomer
		(m, 1H, C ₈ -H).		(<i>c</i> = 1,
				DCM)) ^[1]
e OH	56	¹ H NMR (400 MHz,	95 (<i>S</i>)	$[\alpha]_{20}^{D} =$
1 NO ₂		DMSO) δ/ppm 7.49-		33.8 (<i>c</i> =
		7.43 (m, 4H, Ar-H),		1, DCM)
$C ^{2} = \frac{3}{3}$ (S)-2i		6.19-6.17 (d, 1H, <i>J</i> =		(Ref.
		5.04 Hz, O-H), 5.31-		$[\alpha]_{20}{}^{D} =$
		5.26 (m, 1H, C7-H),		-38.1 for
		4.88-4.84 (m, 1H, C ₈ -H),		(<i>R</i>)-
		4.61-4.55 (m, 1H, C ₈ -H).		isomer
				(<i>c</i> = 1,
				DCM)) ^[2]
ОН	44	¹ H NMR (400 MHz,	95 (<i>S</i>)	$[\alpha]_{25}^{D} =$
		CDCl ₃) δ/ppm 7.30-7.28		40.4 (<i>c</i> =
5 7 8		(m, 2H, Ar-H), 6.91-		1, DCM)
9MeO 2 3 (S)-24		6.89 (m, 2H, Ar-H),		(Ref.
		5.37-5.34 (m, 1H, C ₇ -H),		$[\alpha]_{25}^{D} = -$

		4.60-4.53 (m, 1H, C ₈ -H),		41.6 for
		4.47-4.43 (m, 1H, C ₈ -H),		(<i>R</i>)-
		3.80, (s, 3H, C ₉ -H).		isomer
				(<i>c</i> = 1,
				DCM)) ^[3]
ОН	42.1	¹ H NMR (400 MHz,	97 (<i>R</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 7.33-		25.38 (<i>c</i>
		7.28 (m, 2H, Ar-H),		= 0.5,
2 4 (R)-5a		6.99-6.95 (m, 3H, Ar-		DCM)
3		H), 5.87-5.83 (m, 1H, O-		
		H), 4.89-4.83 (m, 1H,		
		C ₉ -H), 4.61-4.54 (m, 1H,		
		C₀-H), 4.53-4.47 (m, 1H,		
		C ₈ -H), 4.07-3.93 (m, 2H,		
		C ₇ -H)		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 130.32,		
		130.00, 121.40, 115.02,		
		114.90, 79.54, 69.47,		
		67.29. HRMS Calcd. For		
		$C_9H_{11}NNaO_4^+[M+Na^+]$:		
		220.0580. Found:		
		220.0581.		
10	57.9	¹ H NMR (400 MHz,	95 (<i>R</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 7.18-		24.98 (<i>c</i>
		7.14 (m, 2H, Ar-H),		= 0.5,
2 4 (R)-5b		6.93-6.85 (m, 2H, Ar-		DCM)
3		H), 5.86-5.84 (d, 1H, <i>J</i> =		
		5.68 Hz, O-H), 4.91-		
		4.87 (m, 1H, C₀-H),		
		4.64-4.59 (m, 1H, C ₉ -H),		
		4.57-4.50 (m, 1H, C ₈ -H),		
		4.06-3.96 (m, 2H, C ₇ -H),		
		2.18 (s, 3H, C ₁₀ -H)		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 156.62,		
		130.92, 127.41, 126.43,		
		121.07, 111.80, 79.70,		
		69.61, 67.37, 16.35.		
		HRMS Calcd. For		
		$C_{10}H_{13}NNaO_4^{+}[M+Na^{+}]:$		
		234.0737. Found:		

10	50.4	¹ H NMR (400 MHz,	92 (<i>R</i>)	$[\alpha]_{28}^{D} =$
OMe OH		DMSO) δ/ppm 7.00-		10.19 (<i>c</i>
		6.87 (m, 4H, Ar-H),		= 0.5,
2 4 (R)-5c		5.83-5.82 (d, 1H, J =		DCM)
3		5.64 Hz, O-H), 4.87-		
		4.84 (m, 1H, C₀-H),		
		4.60-4.54 (m, 1H, C ₉ -H),		
		4.52-4.46 (m, 1H, C ₈ -H),		
		4.03-3.94 (m, 2H, C ₇ -H),		
		3.33 (s, 3H, С ₁₀ -Н).		
OH	48	¹ H NMR (400 MHz,	88 (R)	$[\alpha]_{23}^{D} =$
		DMSO) δ/ppm 7.20-		19.59 (<i>c</i>
		7.16 (m, 1H, Ar-H),		= 0.5,
2 4 (R)-5d		6.79-6.73 (m, 3H, Ar-		DCM)
5		H), 5.85-5.83 (d, 1H, <i>J</i> =		
		5.68 Hz, O-H), 4.87-		
		4.83 (m, 1H, C₀-H),		
		4.60-4.54 (m, 1H, C ₉ -H),		
		4.52-4.45 (m, 1H, C ₈ -H),		
		4.05-3.94 (m, 2H, C ₇ -H),		
		2.29 (s, 3H, C ₁₀ -H).		
OH	69	¹ H NMR (400 MHz,	96 (<i>R</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 7.11-		22.18 (<i>c</i>
		7.09 (m, 2H, Ar-H),		= 0.5,
10 2 4 (R)-5e		6.86-6.84 (m, 2H, Ar-		DCM)
		H), 5.84-5.83 (d, 1H, <i>J</i> =		
		5.64 Hz, O-H), 4.87-		
		4.83 (m, 1H, C₀-H),		
		4.59-4.54 (m, 1H, C ₉ -H),		
		4.52-4.45 (m, 1H, C ₈ -H),		
		4.01-3.92 (m, 2H, C ₇ -H),		
		2.24 (s, 3H, C ₁₀ -H).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 156.54,		
		130.32, 130.08, 114.90,		
		79.56, 69.61, 67.32,		
		20.55. HRMS Calcd. For		
		$C_{10}H_{13}NNaO_4^{+}[M+Na^{+}]:$		
		234.0737. Found:		
		234.0730.		

CH	65.5	¹ H NMR (400 MHz,	96 (<i>R</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 6.92-		17.99 (<i>c</i>
		6.86 (m, 4H, Ar-H),		= 0.5,
$H_{3}CO^{-2}$ 4 (<i>R</i>)-5f		5.84-5.82 (d, 1H, <i>J</i> =		DCM)
5 3		5.72 Hz, O-H), 4.87-		
		4.83 (m, 1H, C₀-H),		
		4.59-4.54 (m, 1H, C ₉ -H),		
		4.51-4.44 (m, 1H, C ₈ -H),		
		3.99-3.90 (m, 2H, C ₇ -H),		
		3.71 (s, 3H, С ₁₀ -Н).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 154.12,		
		152.65, 116.05, 115.08,		
		79.58, 70.19, 67.35,		
		55.82. HRMS Calcd. For		
		$C_{10}H_{13}NNaO_5^+[M+Na^+]$:		
		250.0686. Found:		
		250.0687.		
	63.5	¹ H NMR (400 MHz,	96 (<i>R</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 7.17-		15.79 (<i>c</i>
		7.10 (m, 2H, Ar-H),		= 0.5,
F 4 (R)-5g		7.01-6.96 (m, 2H, Ar-		DCM)
3		H), 5.87-5.85 (d, 1H, J =		
		5.72 Hz, O-H), 4.88-		
		4.84 (m, 1H, C₀-H),		
		4.60-4.55 (m, 1H, C ₉ -H),		
		4.52-4.45 (m, 1H, C ₈ -H),		
		4.03-3.95 (m, 2H, C ₇ -H).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 157.16 (d,		
		J = 234.69 Hz), 155.00		
		(d, <i>J</i> = 1.96 Hz), 116.44,		
		116.28 (d, <i>J</i> = 13.84		
		Hz), 79.48, 70.21,		
		67.24. HRMS Calcd. For		
		$C_9H_{10}FNNaO_4^+[M+Na^+]$:		
		238.0486. Found:		
		238.0485.		
OH	65	¹ H NMR (400 MHz,	93 (<i>R</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 7.37-		15.79 (<i>c</i>
		7.33 (m, 2H, Ar-H),		= 0.5,
Cl 4 (R)-5h		7.01-6.97 (m, 2H, Ar-		DCM)
3		H), 5.88-5.87 (d, 1H, J =		
		5.68 Hz, O-H), 4.88-		

		4.84 (m, 1H, C ₉ -H),		
		4.60-4.55 (m, 1H, C ₉ -H),		
		4.52-4.46 (m, 1H, C ₈ -H),		
		4.05-3.98 (m, 2H, C ₇ -H).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 157.53,		
		129.75, 125.10, 116.84,		
		79.42, 69.94, 67.17.		
		HRMS Calcd. For		
		$C_9H_{10}CINNaO_4^+[M+Na^+]:$		
		254.0191. Found:		
		254.0192.		
CH .	48	¹ H NMR (400 MHz,	32 (<i>R</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 8.25-		8.79 (<i>c</i> =
		8.21 (m, 2H, Ar-H),		0.5,
O ₂ N ² 4 (R)-5i		7.21-7.16 (m, 2H, Ar-		DCM)
2 3		H), 5.96-5.95 (d, 1H, J =		
		5.56 Hz, O-H), 4.90-		
		4.87 (m, 1H, С ₉ -Н),		
		4.64-4.57 (m, 1H, C ₉ -H),		
		4.56-4.51 (m, 1H, C ₈ -H),		
		4.19-4.18 (d, 2H, J=		
		5.04 Hz, C ₇ -H).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 163.95,		
		126.37, 115.64, 79.24,		
		70.43, 67.00. HRMS		
		Calcd. For		
		$C_9H_{11}N_2O_6^+[M+H^+]$:		
		243.0612. Found:		
		243.0616.		
11	72.6	¹ H NMR (400 MHz,	94 (<i>S</i>)	$[\alpha]_{28}^{D} =$
		DMSO) δ/ppm 8.27-		19.78 (<i>c</i>
13 1 0 0 8 NO ₂		8.25 (m, 1H, Ar-H),		= 0.5,
2 4 (R)-5i		7.90-7.87 (m, 1H, Ar-		DCM)
3		H), 7.57-7.50 (m, 3H,		
		Ar-H), 7.45-7.41 (m,		
		1H, Ar-H), 6.99-6.96		
		(m, 1H, Ar-H), 5.98-		
		5.97 (d, 1H, J = 5.52 Hz,		
		O-H), 5.03-5.00 (m, 1H,		
		C ₉ -H), 4.76-4.71 (m, 1H,		
		C ₉ -H), 4.70-4.64 (m, 1H,		
		C ₈ -H), 4.25-4.16 (m, 2H,		

С7-п).

 Table S13. Characterization of products from RasADH catalyzed preparative scale

 reactions

Product	Isolated	¹ H NMR data	Ee (%)	Optical
	yield (%)			rotation
OH	80.2	¹ H NMR (DMSO, 400	95 (<i>R</i>)	$[\alpha]_{20}{}^{D}$ = -35.2
		MHz) δ/ppm 7.46-7.44		(<i>c</i> = 1, DCM)
5 7 8		(m, 2H, Ar-H), 7.41-		(Ref. [α] ₂₀ ^D = -
2 4		7.37 (m, 2H, Ar-H),		41.6 (<i>c</i> = 1,
° (<i>R</i>)-2a		7.34-7.30 (m, 1H, Ar-		DCM)) ^[1]
		H), 6.10-6.08 (d, 1H, J		
		= 4.8 Hz, O-H), 5.30-		
		5.26 (m, 1H, C ₇ -H),		
		4.88-4.83 (m, 1H, C ₈ -		
		H), 4.60-4.54 (m, 1H,		
		С ₈ -Н).		
OH	67.5	¹ H NMR (400 MHz,	96 (<i>R</i>)	$[\alpha]_{20}{}^{D}$ = -34.7
1 NO ₂		DMSO) δ/ppm 7.49-		(<i>c</i> = 1, DCM)
		7.43 (m, 4H, Ar-H),		(Ref. $[\alpha]_{20}^{D} = -$
$Cl^{2} \xrightarrow{2}_{3}$ (<i>R</i>)-2i		6.19-6.17 (d, 1H, <i>J</i> =		38.1 (<i>c</i> = 1,
		5.04 Hz, O-H), 5.31-		DCM)) ^[2]
		5.25 (m, 1H, C ₇ -H),		
		4.88-4.84 (m, 1H, C ₈ -		
		H), 4.61-4.55 (m, 1H,		
		C ₈ -H).		
OH	76.6	¹ H NMR (400 MHz,	95 (R)	$[\alpha]_{25}^{D} = -33.3$
		CDCl₃) δ 7.31-7.29 (m,		(<i>c</i> = 1, DCM)
5 7 8		2H, Ar-H), 6.91-6.89		(Ref. $[\alpha]_{25}^{D}$ =
9MeO 2 3 (P)-2k		(m, 2H, Ar-H), 5.37-		-41.6 (<i>c</i> = 1,
○ (//)-2K		5.34 (m, 1H, C7-H),		DCM)) ^[3]
		4.60-4.53 (m, 1H, C ₈ -		
		H), 4.47-4.43 (m, 1H,		
		C ₈ -H), 3.81, (s, 3H, C ₉ -		
		Н).		

Table S14. Characterization of pro	ducts from SyADH	catalyzed preparative scale
reactions		

Product	Isolated	NMR and HRMS	Ee (%)	Optical
	yield			rotation
	(%)			

C	47	¹ H NMR (400 MHz,	96 (<i>S</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 7.33-7.29		-22.38
		(m, 2H, Ar-H), 6.98-6.95		(<i>c</i> = 0.5,
2 4 (S)-5a		(m, 3H, Ar-H), 5.89-5.88		DCM)
3		(d, 1H, <i>J</i> = 5.68 Hz, O-H),		
		4.89-4.85 (m, 1H, C₀-H),		
		4.61-4.56 (m, 1H, C₀-H),		
		4.54-4.47 (m, 1H, C ₈ -H),		
		4.05-3.97 (m, 2H, C ₇ -H).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 158.60,		
		130.01, 121.40, 115.00,		
		79.54, 69.44, 67.28.		
		HRMS Calcd. For		
		$C_9H_{11}NNaO_4^+[M+Na^+]$:		
		220.0580. Found:		
		220.0575.		
10	49	¹ H NMR (400 MHz,	35 (S)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 7.18-7.14		-8.99 (<i>c</i>
1 5 7 9		(m, 2H, Ar-H), 6.93-6.85		= 0.5,
2 ⁴ (S)-5b		(m, 2H, Ar-H), 5.86-5.84		DCM)
3		(d, 1H, <i>J</i> = 5.68 Hz, O-H),		
		4.91-4.87 (m, 1H, C₀-H),		
		4.64-4.59 (m, 1H, C ₉ -H),		
		4.57-4.50 (m, 1H, C ₈ -H),		
		4.06-3.96 (m, 2H, C ₇ -H),		
		2.18 (s, 3H, C ₁₀ -H).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 158.60,		
		156.62, 130.92, 127.42,		
		126.43, 121.07, 111.80,		
		79.70, 69.61, 67.37,		
		16.35. HRMS Calcd. For		
		$C_{10}H_{13}NNaO_4^+[M+Na^+]$:		
		234.0737. Found:		
		234.0739.		
	44	¹ H NMR (400 MHz,	99 (<i>S</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 7.01-6.87		-7.39 (<i>c</i>
1 5 7 9 NO2		(m, 4H, Ar-H), 5.86-5.85		= 0.5,
2 4 (S)-5c		(d, 1H, J = 5.68 Hz, O-H),		DCM)
3		4.88-4.84 (m, 1H, C ₉ -H),		
		4.61-4.55 (m, 1H, C ₉ -H),		
		4.53-4.46 (m, 1H, C ₈ -H),		
		4.03-3.94 (m, 2H, C ₇ -H),		

		3.78 (s, 3H, С ₁₀ -Н).		
OH OH	66	¹ H NMR (400 MHz,	97 (S)	$[\alpha]_{25}^{D} =$
$10 1 \stackrel{6}{\sim} 0 \stackrel{10}{\downarrow} NO_{0}$		DMSO) δ/ppm 7.20-7.16		-22.58
		(m, 2H, Ar-H), 6.79-6.74		(<i>c</i> = 0.5,
2 4 (S)-5d		(m, 2H, Ar-H), 5.85-5.84		DCM)
3		(d, 1H, J = 5.68 Hz, O-H),		
		4.87-4.83 (m, 1H, C₀-H),		
		4.60-4.54 (m, 1H, C₀-H),		
		4.52-4.45 (m, 1H, C ₈ -H),		
		4.03-3.94 (m, 2H, C ₇ -H),		
		2.29 (s, 3H, C ₁₀ -H).		
	67	¹ H NMR (400 MHz,	99 (S)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 7.11-7.09		-22.18
		(m, 2H, Ar-H), 6.90-6.83		(<i>c</i> = 0.5,
10 2 4 (S)-5e		(m, 2H, Ar-H), 5.85-5.84		DCM)
3		(d, 1H, J = 5.68 Hz, O-H),		
		4.87-4.83 (m, 1H, C ₉ -H),		
		4.60-4.54 (m, 1H, C₀-H),		
		4.52-4.45 (m, 1H, C ₈ -H),		
		4.01-3.92 (m, 2H, C ₇ -H),		
		2.24 (s, 3H, C ₁₀ -H).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 158.63,		
		156.53, 130.32, 130.08,		
		114.89, 79.56, 69.60,		
		67.31 <i>,</i> 20.55. HRMS		
		Calcd. For		
		$C_{10}H_{13}NNaO_4^+[M+Na^+]$:		
		234.0737. Found:		
		234.0734.		
OH	42	¹ H NMR (400 MHz,	99 (<i>S</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 6.92-6.86		-21.78
		(m, 4H, Ar-H), 5.84-5.83		(<i>c</i> = 0.5,
H ₃ CO 2 4 (S)-5f		(d, 1H, <i>J</i> = 5.72 Hz, O-H),		DCM)
		4.87-4.84 (m, 1H, C ₉ -H),		
		4.59-4.53 (m, 1H, C₀-H),		
		4.51-4.44 (m, 1H, C ₈ -H),		
		3.99-3.90 (m, 2H, C ₇ -H),		
		3.71 (s, 3H, C ₁₀ -H).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 158.63,		
		154.11, 152.65, 116.04,		
		115.08, 79.58, 70.18,		
		67.35, 55.82. HRMS		

		Calcd. For		
		$C_{10}H_{13}NNaO_5^+[M+Na^+]$:		
		250.0686. Found:		
		250.0672.		
ОН	82	¹ H NMR (400 MHz,	97 (<i>S</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 7.16-7.11		-18.39
		(m, 2H, Ar-H), 7.00-6.96		(<i>c</i> = 0.5,
F 4 (S)-5g		(m, 2H, Ar-H), 5.89-5.87		DCM)
3		(d, 1H, J = 5.68 Hz, O-H),		
		4.88-4.84 (m, 1H, C₀-H),		
		4.60-4.55 (m, 1H, C₀-H),		
		4.52-4.45 (m, 1H, C ₈ -H),		
		4.03-3.95 (m, 2H, C7-H).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 158.63,		
		157.15 (d, <i>J</i> = 234.52 Hz),		
		154.98 (d <i>, J</i> = 2 Hz),		
		116.43 (d, <i>J</i> = 4.93 Hz),		
		116.27 (d <i>, J</i> = 9.86 Hz),		
		79.48, 70.17, 67.24.		
		HRMS Calcd. For		
		$C_9H_{10}FNNaO_4^+[M+Na^+]$:		
		238.0486. Found:		
		238.0481.		
ОН	90	¹ H NMR (400 MHz,	99 (<i>S</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 7.40-7.36		-21.78
$2 \begin{bmatrix} 5 & 7 & 9 \\ 7 & 9 \end{bmatrix}$		(m, 2H, Ar-H), 7.04-7.00		(<i>c</i> = 0.5,
Cl 3 4 (S)-5h		(m, 2H, Ar-H), 5.91-5.90		DCM)
6010		(d, 1H, J = 5.68 Hz, O-H),		
		4.90-4.87 (m, 1H, C ₉ -H),		
		4.63-4.58 (m, 1H, C ₉ -H),		
		4.56-4.49 (m, 1H, C ₈ -H),		
		4.08-4.01 (m, 2H, C ₇ -H).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 158.63,		
		157.56, 129.77, 125.15,		
		116.88, 79.45, 69.98,		
		67.21. HRMS Calcd. For		
		$C_9H_{10}CINNaO_4^{T}[M+Na^{T}]:$		
		254.0191. Found:		
		254.0186.		

U U	62	¹ H NMR (400 MHz,	99 (S)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 8.25-8.20		-22.58
		(m, 2H, Ar-H), 7.21-7.16		(<i>c</i> = 0.5,
O ₂ N ⁴ (S)-5i		(m, 2H, Ar-H), 5.97-5.95		DCM)
- 3		(d, 1H, <i>J</i> = 5.52 Hz, O-H),		
		4.90-4.87 (m, 1H, C₀-H),		
		4.64-4.58 (m, 1H, С ₉ -Н),		
		4.56-4.51 (m, 1H, C ₈ -H),		
		4.19-4.18 (d, 2H, <i>J</i> = 4.96		
		Hz, C7-H).		
		¹³ C NMR (DMSO, 100		
		MHz) δ/ppm 163.95,		
		141.56, 126.36, 115.62,		
		79.24, 70.43, 67.00.		
		HRMS Calcd. For		
		$C_9H_{10}N_2NaO_6^+[M+Na^+]$:		
		265.0431. Found:		
		265.0426.		
12 11	74	¹ H NMR (400 MHz,	84 (<i>S</i>)	$[\alpha]_{25}^{D} =$
		DMSO) δ/ppm 8.28-8.25		-17.59
13 1 5 7 8 9 NO2		(m, 1H, Ar-H), 7.90-7.87		(<i>c</i> = 0.5,
2 4 (S)-5 j		(m, 1H, Ar-H), 7.57-7.50		DCM)
3		(m, 3H, Ar-H), 6.99-6.96		
		(m, 1H, Ar-H), 6.00-5.98		
		(d, 1H, <i>J</i> = 5.52 Hz, O-H),		
		5.04-5.00 (m, 1H, С ₉ -Н),		
		4.76-4.71 (m, 1H, C ₉ -H),		
		4.70-4.65 (m, 1H, C ₈ -H),		
		4.25-4.17 (m, 2H, C ₇ -H).		

References

- [1] D. Qin, W. Lai, D. Hu, Z. Chen, A. Wu, Y. Ruan, Z. Zhou and H. Chen, *Chem. Eur. J.* 2012, 18, 10515-10518.
- [2] B. V. S. Reddy and J. George, *Tetrahedron: Asymmetry*, 2011, 22, 1169-1175.
- [3] H. Maheswaran, K. L. Prasanth, G. G. Krishna, K. Ravikumar, B. Sridharb and M. L. Kantam, *Chem. Commun.* 2006, **39**, 4066-4068.

Cell-free extract of KRED catalyzed reduction of 1k at elevated substrate concentrations

Table S15.	YGL039w	and	RasADH	catalyzed	reduction	of	1k	at	elevated	substrate
concentrati	ons									

		Ŷ	GL039w [[]	a]	RasADH ^[b]			
Entry	Substrate	1k [%]	2k [%]	3k [%]	1k [%]	2k [%]	3k [%]	
	loadings (g/L)							
1	10	6	89	5	0	>99	0	
2	20	28	68	4	27	71	2	
3	50	75	21	4	82	16	2	

The biotransformation was carried out with appropriate amounts of **1k** and glucose (the weight of glucose is 4 times of that of **1k**), 5 mg NADP⁺, 3.5 mL 15% (w/v) cell-free extract (CFE) of KREDs in 50 mM NaP_i (pH 7.0), 1 mL 15% (w/v) CFE of GDH in 50 mM NaP_i (pH 7.0) and 0.5 mL DMSO at 30 °C. [a] Reaction time was 4h. [b] Reaction time was 2h.

 Table S16. YGL039w and RasADH catalyzed reduction of ketone 1k at elevated substrate

 concentrations in the presence of other organic solvents

		Y	GL039v	w RasADH			
Entry	Organic solvent	1k [%]	2k	3k [%]	1k [%]	2k	3k [%]
	(10%, v/v)		[%]			[%]	
1	N.A. ^[a]	86	6	8	78	15	7

2	Ethyl acetate	79	7	14	73	18	9
3	Et ₂ O	72	11	17	36	48	16
4	EtOH	69	16	15	45	40	15
5	Methyl <i>tert</i> -butyl ether (MTBE)	23	30	47	35	47	18
6	diethylene glycol dimethyl ether (DGDE)	61	23	16	48	39	13
7	Dioxane	58	22	20	41	45	14
8	cyclohexane	91	2	7	64	24	12
9	acetone	75	12	13	62	28	10
10	THF	56	31	13	56	32	12
11	MeOH	77	12	11	78	15	7
12	Dichloromethane	>99	0	0	81	14	5
13	DMF	63	22	15	64	26	10
14	toluene	87	4	9	72	21	7

15	<i>i</i> -PrOH	52	23	25	51	35	14
16	CCl_4	90	2	8	78	16	6
17	hexane	91	3	6	76	17	7

The biotransformation was carried out with 0.1 g **1k**, 0.04 g glucose, 2 mg NADP⁺, 1.24 mL 15% (w/v) CFE of KREDs in 50 mM NaP_i (pH 7.0), 0.36 mL 15% (w/v) CFE of GDH in 50 mM NaP_i (pH 7.0), 0.2 mL DMSO and 0.2 mL of appropriate organic solvents at 30 °C for 3 h. [a] N.A. stands for not applicable, meaning no organic solvent other than DMSO was added.

E coli. whole-cell coexpressing RasADH and GDH catalyzed reduction of 1k at elevated substrate concentrations

Table S17. Whole cells of E coli. strain coexpressing RasADH and GDH catalyzed reduction of ketone 1k at elevated substrate concentrations

Entry	Substrate	Reaction	Organic solvent (v/v)	1k	2k	3k [%]
	loading (g/L)	time (h)		[%]	[%]	
1	50	5	<i>N.A</i> . ^[a]	24	54	22
2	75	5	<i>N.A.</i>	50	40	10
3	100	5	<i>N.A.</i>	56	29	15
4	50	3	DGDE (20%)	4	80	16
5	50	3	Dioxane (20%)	2	79	19
6	50	3	Et ₂ O (20%)	15	70	15
7	50	3	Acetone (20%)	4	76	20
8	50	3	EtOH (20%)	2	75	23
9	50	3	<i>i</i> -PrOH (20%)	5	73	22
10	50	3	MTBE (20%)	17	70	13
11	50	3	THF (20%)	34	53	13
12	50	3	Acetone (50%)	7	79	14
13	50	3	DGDE (50%)	8	78	14
14	50	3	Dioxane (50%)	0	86	14
15	75	3	Dioxane (50%)	17	58	25
16	75	3	Dioxane (50%)	6	66	28

The biotransformation was carried out with appropriate amounts of **1k** and glucose (the weight of glucose is 4 times of that of **1k**), 2 mg NADP⁺, 0.6 g of appropriate *E coli*. whole-cells (for entries 1 to 14, *E coli*. strain constructed via two gene-two plasmid method; for entries 15 and 16, *E coli*. strains constructed via two gene-one plasmid method, with plasmids pRSF-duet-RasADH (MCS1)-GDH (MCS2) and pRSF-duet-GDH (MCS1)-RasADH (MCS2), respectively), 0.2 mL DMSO, appropriate amount of other organic solvents and 50 mM NaP_i (pH 7.0) at 30 °C for appropriate hours. [a] *N.A.* stands for not applicable, meaning no organic solvent other than DMSO was added.

Product purification:

After 3h (entry 14), the reaction mixture was subjected to centrifugation and the supernatant was extracted with EtOAc. The organic layer was then washed with brine and dried with anhydrous Na_2SO_4 , then filtered, and the filtrate was evaporated to dryness. The product **2k** was purified by flash chromatography (silica gel, petroleum ether: EtOAc = 8:1).

Table S18.	List of	oligonucleotides	used in	this	study
Table 510.	LISC UI	ongonaciconacs	uscu m	UIIIS	study

Name	Sequence (5'→3') ^a
	CGGCCTGGTGCCGCGCGGCAGCCATATGTCTAA
pE128a-Ndel-YDR541c_tw	TACAGTTCTAGTTTCT
FT39- VL-I VDD541	AGTGGTGGTGGTGGTGGTG <mark>CTCGAG</mark> TCATAATC
pE128a-Xnol-YDR541c_rc	TGTTCTCCTTCTTC
FT39- NJ-1 VCI 157 6	CGGCCTGGTGCCGCGCGGCAGCCATATGACTAC
pE128a-Ndel-YGL15/W_IW	TGATACCACTGTTTTC
ETTO VALVCI 157	AGTGGTGGTGGTGGTGGTG <mark>CTCGAG</mark> TTAGGCT
pE128a-XII0I-YGL15/w_rc	TCATTTTGAACTTCT
nFT28a Ndal VPI 113a fw	CGGCCTGGTGCCGCGCGGCAGCCATATGATTAC
pE128a-Nuel-1FL113C_IW	TTCAATTGACATAGCAG
nFT28a Vhol VPI 113a ra	AGTGGTGGTGGTGGTGGTG <mark>CTCGAG</mark> TCAGTTG
	AGCACATACTTACCAT
nFT28a Ndal VHP104w fw	CGGCCTGGTGCCGCGCGGCAGCCATATGTCTTC
	ACTGGTTACTCTTAAT
nFT282-YhoLVHR104w re	AGTGGTGGTGGTGGTGGTGGTGCTCGAGTCAGGCA
	AAAGTGGGGAATTTAC
nFT282-NdoLVNI 274c fw	CGGCCTGGTGCCGCGCGGCAGCCATATGAGTA
	AGAAACCAATTGTTTTG
pFT282-XhoI-VNL274c rc	AGTGGTGGTGGTGGTGGTGGTG <mark>CTCGAG</mark> TCAAACT
	AATGGCTTAGATTCAT
nFT282-NdeLVDR368w_fw	CGGCCTGGTGCCGCGCGGCAGCCATATGCCTGC
	TACGTTAAAGAATTCT
nET28a-XhoI-VDR368w_rc	AGTGGTGGTGGTGGTGGTGGTGCTCGAGTCATTGG
	AAAATTGGGAAGGAT
nET28a-NdeI-YGL039w_fw	CGGCCTGGTGCCGCGCGGCAGCCATATGACTAC
	TGAAAAAACCGTTG
pET28a-XhoI-YGL039w_rc	AGTGGTGGTGGTGGTGGTGGTGCTCGAGTTAGCTTT
	TACTTTGAACTTCTAGT
pET28a-NdeI-YNL331c fw	CGGCCTGGTGCCGCGCGGCAGCCATATGACTG
F	ACTTGTTTAAACCTCT
pET28a-XhoI-YNL331c rc	AGTGGTGGTGGTGGTGGTGGTGCTCGAGCTAATTGT
F	CAAAAGCTATCCTGGC
pET28b-NcoI-Ymr226c fw	TTTAACTTTAAGAAGGAGATATACCATGTCCCA
	AGGTAGAAAAGCTGCAG
pET28b-XhoI-Ymr226c rc	AGTGGTGGTGGTGGTGGTGGTGCTCGAGTgATCCAC
	GGAAGATATGATGAGGT
pET28b-NcoI-YOL151w fw	ACTTTAAGAAGGAGATATACCATGTCAGTTTTC
· ····································	GTTTCAGGTGCT
pET28b-XhoI-YOL151w_rc	GTGGTGGTGGTGGTGGTGGTGCTCGAGTATTCTGCC
	CTCAAATTTTAA AAT

nET29a Ndal VAL060m fw	CGGCCTGGTGCCGCGCGGCAGCCATATGAGAG
pE128a-Nuel-TAL000w_Iw	CTTTGGCATATTTCAAG
nET79a Vhal VAL 060m va	AGTGGTGGTGGTGGTGGTGCTCGAGTTACTTCA
pE128a-Anoi-YAL000w_rc	TTTCACCGTGATTGT
- FT39h Nacl VOD120 f	ACTTTAAGAAGGAGATATACCATGCCTGCTACT
pE1280-Nc01-YOR120w_IW	TTACATGATTCT
-ET296 Vhal VOD120	GTGGTGGTGGTGGTGGTGCTCGAGCTTGAATAC
pE1280-Anoi-YOR120w_rc	TTCGAAAGGAGACCAAT
-ET29a NJALVOL 195a fra	CGGCCTGGTGCCGCGCGGCAGCCATATGTGCG
pE128a-Ndel-YGL185C_IW	ATTCTCCTGCAACGACT
- ET29- VL-I VCI 195	AGTGGTGGTGGTGGTGGTG <mark>CTCGAG</mark> TCAAACT
pE128a-Anoi-YGL185c_rc	ACACGGGAGAAATGCT
	TTTAACTTTAATAAGGAGATATA <mark>CCATGG</mark> CAACT
pACYC-Ncol-GDH(1)-IW	GAACAGAAAGCCATTGT
	CTGCAGGCGCGCCGAGCTC <mark>GAATTC</mark> TCACTGC
pACYC-EcoRI-GDH(2)-rc	CACTTTATCACCGTCTTTAT
- DCE No. I Don ADH(1) for	TTTAACTTTAATAAGGAGATATACCATGTACCGT
pRSF-Ncol-RasADH(1)-lw	TTACTGAATAAAACCG
PDSE FeeDI Des ADU(1) ve	CTGCAGGCGCGCCGAGCTC <mark>GAATTC</mark> TTAAACTT
pRSF-EcoRI-RasADH(1)-rc	GGGTTAAACCGCCAT
»DSE Ndel DecADH(1) (CDH(2) fr	TTAAGTATAAGAAGGAGATATA <mark>CATAtg</mark> gcaACTG
pRSF-Ndel-RasADH(1)-GDH(2)-Iw	AACAGAAAGCCATTGT
pDSE Vhol Dog (DH(1) CDH(2) ro	CAGCGGTTTCTTTACCAGACTCGAGTCACTGCC
pKSF-AlloI-KasADH(1)-GDH(2)-rc	ACTTTATCACCGTC
nDSE Naal CDH(1) fw	TTTAACTTTAATAAGGAGATATA <mark>CCATGG</mark> CAA
pKSF-Ncol-GDH(1)-Iw	CTGAACAGAAAGCCATTGT
DSE EacDI CDU(1) ro	CTGCAGGCGCGCCGAGCTCGAATTCTCACTGC
pRSF-EcoRI-GDH(1)-rc	CACTTTATCACCGTCTTTAT
DSE Ndol CDU(1) DocADU(2) for	AGTATAAGAAGGAGATATACATATGTACCGTTTA
pror-nuel-GDH(1)-KasADH(2)-IW	CTGAATAAAACCGCCGT
nDSE Vhol CDH(1) Dog (DH(2)	CAGCGGTTTCTTTACCAGACTCGAGTTAAACTT
prof-Alloi-GDH(1)-KasADH(2)-rc	GGGTTAAACCGCCAT

^aNucleotides colored in red indicate cleavage sites

NMR of the products from CFE catalyzed preparative scale reactions

HPLC spectra of the products from analytical scale reactions

spectrum is the chiral HPLC analysis of RasADH-catalyzed biotransformation.

spectrum is the chiral HPLC analysis of YGL039w-catalyzed biotransformation.

spectrum is the chiral HPLC analysis of RasADH-catalyzed biotransformation.

spectrum is the chiral HPLC analysis of YGL039w-catalyzed biotransformation.

spectrum is the chiral HPLC analysis of YGL039w-catalyzed biotransformation.

spectrum is the chiral HPLC analysis of RasADH-catalyzed biotransformation.

spectrum is the chiral HPLC analysis of YGL039w-catalyzed biotransformation.

spectrum is the chiral HPLC analysis of RasADH-catalyzed biotransformation.

spectrum is the chiral HPLC analysis of SyADH-catalyzed biotransformation.

spectrum is the chiral HPLC analysis of YGL039w-catalyzed biotransformation.

HPLC spectra of the products from CFE catalyzed preparative scale reactions

spectrum is the chiral HPLC analysis of RasADH (CFE) catalyzed biotransformation.

HPLC spectra of **2k** from whole-cell catalysis

