Supporting Information

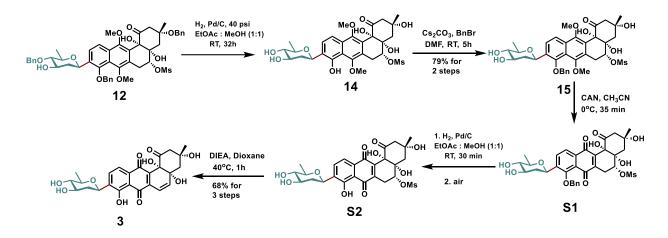
Synthesis and antitumor activities of aquayamycin and analogues of derhodinosylurdamycin A

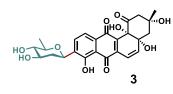
Padam P. Acharya, Hem Raj Khatri, Sandip Janda, and Jianglong Zhu*

Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA.

* Corresponding author. Tel.: +1 419 530-1501. E-mail: <u>Jianglong.Zhu@Utoledo.edu</u>

	Page
Materials and Methods	S2
Synthesis of Aquayamycin (3)	S3
Synthesis of Analogue (4)	S4
Synthesis of Analogue (5)	S6
Synthesis of Analogue (6)	S11
Synthesis of Analogue (7)	S14
Selected NMR spectra for new compounds	S18
Biological data	S54


Table of Contents


Materials and Methods

Proton and carbon nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on either Bruker 600 (¹H NMR-600 MHz; ¹³C NMR 150 MHz) at ambient temperature with CDCl₃ as the solvent unless otherwise stated. Chemical shifts are reported in parts per million relative to residual protic solvent internal standard CDCl₃: ¹H NMR at δ 7.26, ¹³C NMR at δ 77.36. Data for ¹H NMR are reported as follows: chemical shift, integration, multiplicity (app = apparent, par obsc = partially obscure, ovrlp = overlapping, s = singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, m = multiplet) and coupling constants in Hertz. All ¹³C NMR spectra were recorded with complete proton decoupling. High resolution mass spectrometry (HRMS) was performed on a TOF mass spectrometer. Optical rotations were measured with Autopol-IV digital polarimeter; concentrations are expressed as g/100 mL.

All reagents and chemicals were purchased from Acros Organics, Sigma Aldrich, Fisher Scientific, Alfa Aesar, and Strem Chemicals and used without further purification. THF, methylene chloride, toluene, and diethyl ether were purified by passing through two packed columns of neutral alumina (Innovative Technology). Anhydrous DMF and benzene were purchased from Acros Organics and Sigma-Aldrich and used without further drying. All reactions were carried out in oven-dried glassware under an argon atmosphere unless otherwise noted. Analytical thin layer chromatography was performed using 0.25 mm silica gel 60-F plates. Flash column chromatography was performed using 200-400 mesh silica gel (Scientific Absorbents, Inc.). Yields refer to chromatographically and spectroscopically pure materials, unless otherwise stated.

1. Synthesis of Aquayamycin (3)

To a solution of partially protected β -*C*-arylglycoside **12**^{S1} (30 mg, 0.034 mmol) in 1.4 mL of mixed solvents (EtOAc/MeOH, 1/1, v/v), 10% palladium on carbon (36.2 mg, 0.034 mmol) was added. After being evacuated and filled with hydrogen five times, the reaction mixture was stirred at room temperature under positive hydrogen

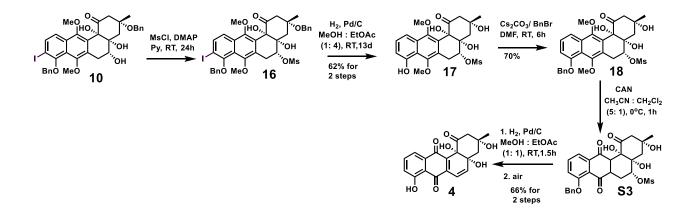
pressure (40 psi) for 32 h. The reaction mixture was then diluted with $CH_2Cl_2/MeOH$ (10/1, v/v), filtered through celite, and concentrated to afford crude compound **14** (20.8 mg, quantitative) which was used directly in the next step without purification.

A solution of compound **14** (20.8 mg, 0.034 mmol) in 0.74 mL DMF was cooled at 0 °C. To this solution was added Cs_2CO_3 (13.3 mg, 0.041 mmol) followed by addition of 37 µL stock solution of benzyl bromide in DMF (0.051 mmol, 1.5 eq.) (Note: the stock solution was prepared by adding 40 µL of benzyl bromide in 200 µL DMF). The reaction mixture was stirred at room temperature for 5 h before being quenched with a pinch of solid ammonium chloride. DMF was removed by air flow and the residue was purified by using preparative TLC in CH₂Cl₂/MeOH (10/1, v/v) to afford 18.9 mg (79% yield) of compound **15**.

A solution of compound **15** (14.6 mg, 0.021 mmol) in 1.3 mL of acetonitrile was cooled at 0 °C and 83 μ L of stock solution of cerium ammonium nitrate in water (0.0624 mmol, 3 eq.) was added (Note: the stock solution was prepared by adding 174 mg of cerium ammonium nitrate in 400 μ L water). The reaction mixture was stirred at 0 °C for 35 min before being diluted with 4 mL ethyl acetate. 0.5 mL of ice cooled saturated NaHCO₃ was added and the resulting mixture was stirred for 2 minutes. The organic layer was separated and passed through a small pad of Na₂SO₄, concentrated under reduce pressure, and kept in vacuum for 10 minutes to give the crude compound **S1**. This crude material was dissolved in 0.26 mL of mixed solvents (EtOAc/MeOH, 1:1, v/v) and 10% palladium on carbon (4.4 mg, 0.0042 mmol) was added. The mixture was evacuated and filled with hydrogen for three times. After being stirring at room temperature under

positive hydrogen pressure for 30 min, the reaction mixture was diluted with methanol, filtered through celite, and concentrated under reduced pressure. The resulting crude compound **S2** was dissolved in 0.8 mL of 1,4-dioxane and *N*,*N*-diisopropylethylamine (7.3 μ L, 0.042 mmol) was added. After being stirred at 40 °C for 1 h, the reaction mixture was cooled down. Dioxane was removed by air flow and the residue was purified by preparative TLC in CH₂Cl₂/MeOH (10/1, v/v) to furnish 6.9 mg of aquayamycin (**3**) as dark red solid (68% yield for 3 steps).

 $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{23}} = 119.8^{\circ} (c = 0.1, CH_3OH);$


FT-IR (thin film): 3367, 2963, 2921, 2852, 1723, 1637, 1563, 1260, 1055, 650 cm⁻¹;

¹H NMR (600 MHz,CD₃OD) δ 7.86 (d, *J*=7.9 Hz, 1 H), 7.59 (d, *J*=7.7 Hz, 1 H), 6.87 (d, *J*=9.7 Hz, 1 H), 6.40 (d, *J*=9.7 Hz, 1 H), 4.90 (br. s., 1 H), 3.69 (ddd, *J*=11.2, 8.8, 5.0 Hz, 1 H), 3.42 - 3.46 (m, 1 H), 3.03 (t, *J*=9.0 Hz, 1 H), 2.82 (d, *J*=12.8 Hz, 1 H), 2.66 (dd, *J*=12.9, 2.1 Hz, 1 H), 2.37 - 2.46 (m, 1 H), 2.01 - 2.06 (m, 2 H), 1.37 (d, *J*=6.2 Hz, 4 H), 1.24 (s, 3 H) ppm;

¹³C NMR (150 MHz, CD₃OD) δ 206.94, 190.43, 183.60, 158.92, 145.91, 140.48, 139.89, 139.31, 134.29, 132.24, 120.03, 118.12, 115.44, 82.09, 78.80, 78.64, 77.76, 77.67, 73.57, 72.49, 53.25, 44.73, 41.11, 30.17, 18.61 ppm;

ESI-HRMS [M+Na]⁺ calculated for C₂₅H₂₆NaO₁₀ 509.1424, found 509.1438.

2. Synthesis of Analogue (4)

MeO HO, HO, YOH OMS BnO MeO To a solution of tetracyclic aryliodide $10^{S1}(115 \text{ mg}, 0.162 \text{ mmol})$ in 0.8 mL anhydrous pyridine, methanesulfonyl chloride (19 µL, 0.243 mmol) and 4dimethylaminopyridine (2 mg, 0.0162 mmol) were added. The resulting mixture was stirred at room temperature for 24 h before pyridine was removed by air flow. The reaction mixture was diluted with CH₂Cl₂, washed

¹⁸ by air flow. The reaction mixture was diluted with CH₂Cl₂, washed sequentially with saturated CuSO₄ solution, water, and brine. The organic layer was separated,

dried over sodium sulfate, filtered, and concentrated under reduce pressure to produce crude compound 16 which was directly used in the next step.

To a solution of crude compound **16** in 2 mL of EtOAc/MeOH (4/1, v/v), 10% palladium on carbon (172 mg, 0.162 mmol) was added. After the reaction mixture was evacuated and filled with hydrogen for three times, it was stirred at room temperature under positive hydrogen pressure for 13 days. The reaction mixture was diluted with CH₂Cl₂/MeOH (10:1, v/v), filtered through celite, and concentrated under reduce pressure. The residue was purified by using preparative TLC in CH₂Cl₂/MeOH (15/1, v/v) to afford 48.8 mg (62% yield for 2 steps) of desired compound **17**.

To a solution of compound **17** (48.8 mg, 0.101 mmol) in 2.2 mL DMF cooled at 0 $^{\circ}$ C was added Cs₂CO₃ (40 mg, 0.122 mmol). After the addition of benzyl bromide (18 µL, 0.152 mmol), the resulting mixture was stirred at room temperature for 6 h. The reaction mixture was quenched with a pinch of solid NaHCO₃ and DMF was removed by air flow. The residue was purified via preparative TLC (hexanes/ethyl acetate, 1/1, v/v) to give 40.5 mg (70% yield) of the desired compound **18**.

 $[\alpha]_{\rm D}^{23} = -75.0^{\circ} (c = 0.1, \text{CHCl}_3);$

FT-IR (thin film): 3445, 2972, 2861, 1720, 1572, 1326, 1167, 1053, 926, 697 cm⁻¹;

¹**H NMR (600 MHz, CD₃OD)** δ 7.63 - 7.65 (m, 1 H), 7.57 - 7.60 (m, 2 H), 7.39 - 7.44 (m, 3 H), 7.32 - 7.36 (m, 1 H), 7.11 (d, *J*=7.3 Hz, 1 H), 5.21 - 5.26 (m, 2 H), 5.03 (dd, *J*=5.8, 1.4 Hz, 1 H), 3.77 (s, 3 H), 3.69 - 3.74 (m, 1 H), 3.68 (s, 3 H), 3.51 - 3.58 (m, 1 H), 3.18 (s, 3 H), 2.76 (d, *J*=12.7 Hz, 1 H), 2.56 (dd, *J*=12.7, 2.9 Hz, 1 H), 1.98 (dd, *J*=14.9, 2.9 Hz, 1 H), 1.88 (d, *J*=14.7 Hz, 1 H), 1.16 (s, 3 H) ppm;

¹³C NMR (150 MHz, CD₃OD) δ 207.23, 156.29, 152.24, 151.19, 138.41, 131.73, 129.52, 128.99, 128.90, 127.72, 123.00, 122.56, 116.46, 110.27, 82.08, 79.14, 79.05, 76.07, 72.46, 63.32, 62.05, 51.46, 42.98, 38.31, 31.04, 30.47 ppm;

ESI-HRMS [M+Na]⁺ calculated for C₂₉H₃₂NaO₁₀S 595.1614, found 595.1637.

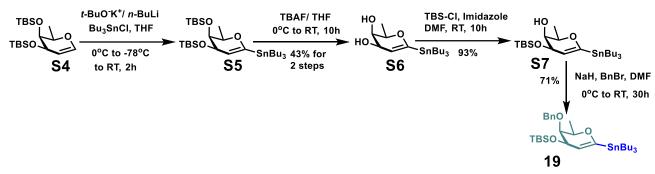
A solution of compound **18** (15 mg, 0.026 mmol) in 2.0 mL of CH₃CN/CH₂Cl₂ (5/1, v/v) was cooled to 0 °C. 104 μ L of stock solution of cerium ammonium nitrate in water (0.079 mmol, 3 eq.) was added (Note: the stock solution was prepared by adding 174 mg of cerium ammonium nitrate in 400 μ L water). The reaction mixture was stirred at 0 °C for 1 h before

being diluted with 2 mL ethyl acetate. 0.5 mL of ice cooled saturated NaHCO₃ was added and the resulting mixture was stirred for 5 minutes. The organic layer was separated and passed through a small pad of Na₂SO₄, concentrated under reduce pressure, and kept in vacuum for 10 minutes to

give the crude compound **S3**. This crude material was dissolved in 0.34 mL of mixed solvents (EtOAc/MeOH, 1:1, v/v) and 10% palladium on carbon (28 mg, 0.0262 mmol) was added. The mixture was evacuated and filled with hydrogen for three times. After being stirring at room temperature under positive hydrogen pressure for 1.5 h, the reaction mixture was diluted with methanol, filtered through celite, and concentrated under reduced pressure. The residue was purified by preparative TLC in CH₂Cl₂/MeOH (20/1, v/v) to furnish 6.2 mg of Analogue (4) as dark red solid (66 % yield for 2 steps).

 $[\boldsymbol{\alpha}]_{\mathbf{D}}^{23} = -48.0^{\circ} (c = 0.1, \text{CH}_3\text{OH});$

FT-IR (thin film): 3369, 2976, 2930, 1725, 1635, 1456, 1086, 1045, 696 cm⁻¹;


¹**H NMR** (**600 MHz**, **CD**₃**OD**) δ 7.71 (dd, *J*=8.3, 7.5 Hz, 1 H), 7.58 (dd, *J*=7.5, 1.1 Hz, 1 H), 7.31 (dd, *J*=8.4, 0.9 Hz, 1 H), 6.87 (d, *J*=9.9 Hz, 1 H), 6.41 (d, *J*=9.7 Hz, 1 H), 2.84 (d, *J*=12.8 Hz, 1 H), 2.67 (dd, *J*=12.9, 2.3 Hz, 1 H), 2.03 - 2.05 (m, 2 H), 1.24 (s, 3 H) ppm;

¹³C NMR (150 MHz, CD₃OD) δ 206.96, 189.47, 183.73, 162.69, 146.35, 140.37, 139.90, 138.00, 133.59, 125.29, 120.07, 118.22, 115.95, 82.10, 78.67, 77.72, 53.24, 44.72, 30.16 ppm;

ESI-HRMS [M+Na]⁺ calculated for C₁₉H₁₆NaO₇ 379.0794, found 379.0796.

3. Synthesis of Analogue (5)

3.1. Synthesis of D-Fucal derived Glycal Stannane 19

BnO TBSO 19 To a flame-dried round-bottomed flask containing potassium *tert*-butoxide (2.4 g, 21.2 mmol) in 15 mL dry THF (dried with *n*-BuLi using 1,10-phenanthroline as an indicator) cooled at -78 $^{\circ}$ C, was added 22 mL of 1.6 M *n*-

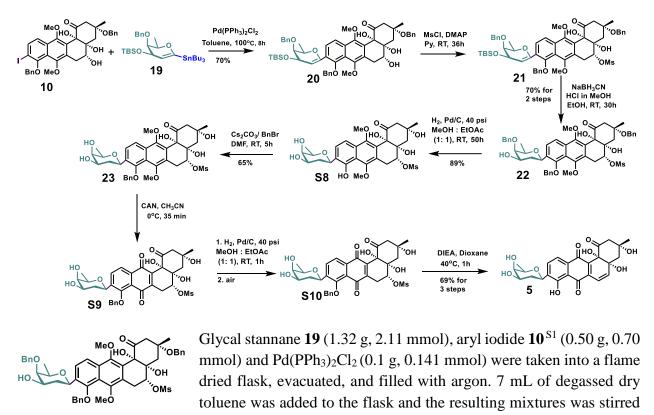
¹⁹ BuLi (35.4 mmol). To this mixture was added a solution of 3,4-di-*O*-tertbutyldimethylsilyl-D-fucal $S4^{S2}$ (4.23 g, 11.8 mmol) in 8.5 mL dry THF and the resulting mixture was stirred at -78 °C for 1 h. 9.5 mL of tri-*n*-butyltin chloride (35.4 mmol) was then added, and the resulting mixture was warmed to room temperature and stirred for 1 h. The reaction mixture was quenched with saturated NaHCO₃ and extracted with ethyl acetate. The combined organic fractions were washed with water and brine, dried over sodium sulfate, and concentrated under reduce pressure. The residue was then passed through a small pad of silica using hexanes as the eluent, and the organic fractions were concentrated to afford crude glycal stannane S5 which was used directly in the next step.

To a solution of crude glycal stannane **S5** in 39 mL THF cooled at 0 $^{\circ}$ C was added 35.4 mL of 1.0 M tetra-*n*-butyl ammonium fluoride (35.4 mmol) and the resulting mixture was stirred at room temperature for 10 h. Saturated aqueous NaHCO₃ solution was added and THF was removed under reduce pressure. The aqueous layer was extracted with ethyl acetate and combined organic extracts were washed sequentially with water and brine, dried over sodium sulfate, and concentrated. The crude residue was purified by silica gel flash column chromatography (hexanes/ethyl acetate, 10/1 to 4/1, with 1% Et₃N) to provide 2.13 g (43% yield for 2 steps) of diol **S6**.

To a solution of diol **S6** (1.13 g, 2.69 mmol) in 2.7 mL DMF were added Et_3N (1.87 mL, 13.5 mmol) and *tert*-butyldimethylsilyl chloride (0.44 g, 2.96 mmol). The resulting mixture was stirred at room temperature for 10 h before being quenched with water. The mixture was extracted with ethyl acetate, and combined organic extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduce pressure. The crude residue was purified by silica gel flash chromatography (hexanes/ethyl acetate, 10/1, with 1% Et_3N) to afford 1.33 g (93% yield) of glycal stannane **S7**.

To a solution of **S7** (1.33 g, 2.49 mmol) in 8.3 mL DMF cooled at 0 °C was added sodium hydride (0.2 g, 4.98 mmol) and the mixture was stirred at 0 °C for 45 minutes. Benzyl bromide (0.36 mL, 2.99 mmol) was then added and the resulting mixture was warmed up to room temperature and stirred for 30 h before being quenched with water. The aqueous mixture was extracted with ethyl acetate and combined organic extracts were washed with water, dried over sodium sulfate, filtered, and concentrated in vacuo. Purification on silica gel flash column chromatography (hexanes/dichloromethane = 40/1, with 1% Et₃N) provided 1.1 g (71% yield) of corresponding glycal stannane **19**.

 $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{23}} = -60.7^{\circ} (c = 0.1, \text{CHCl}_3);$


FT-IR (thin film): 3071, 2953, 2925, 2856, 2674, 2559, 1677, 1288, 1072, 702 cm⁻¹;

¹**H NMR** (**600 MHz**, **CDCl**₃) δ 7.36 - 7.40 (m, 2 H), 7.29 - 7.33 (m, 2 H), 7.23 - 7.26 (m, 1 H), 4.97 (d, *J*=12.1 Hz, 1 H), 4.66 (dd, *J*=2.8, 1.3 Hz, 1 H), 4.61 (d, *J*=11.9 Hz, 1 H), 4.46 - 4.51 (m, 1 H), 3.99 - 4.05 (m, 1 H), 3.51 (dt, *J*=3.7, 2.0 Hz, 1 H), 1.48 - 1.55 (m, 6 H), 1.31 (dq, *J*=14.8, 7.4 Hz, 6 H), 1.23 (d, *J*=6.8 Hz, 3 H), 0.86 - 0.94 (m, 24 H), 0.11 (d, *J*=4.2 Hz, 6 H) ppm;

¹³C NMR (150 MHz, CDCl₃) δ 163.09, 139.66, 128.39, 128.02, 127.50, 113.71, 76.05, 73.34, 73.00, 29.27, 27.55, 26.27, 18.60, 16.79, 14.07, 10.02, -4.02, -4.32 ppm;

ESI-HRMS [M+H]⁺ Calculated for C₃₁H₅₇O₃SiSn 625.3099, found 625.3113.

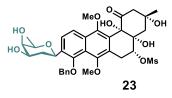
3.2. Synthesis of Analogue (5)

22 at 100 °C for 8 h. The reaction mixture was cooled to room temperature and directly subjected to purification via silica gel flash column chromatography (hexanes/ethyl acetate = 10/1, 2% Et₃N) to affording 452 mg (70% yield) of the C1-arylated glycal **20**.

To a solution of C1-arylated glycal **20** (424 mg, 0.463 mmol) in 2.3 mL pyridine were added methanesulfonyl chloride (54 μ L, 0.70 mmol) and 4-dimethylaminopyridine (5.6 mg, 0.046 mmol). After the resulting mixture was stirred at room temperature for 36 h, pyridine was removed by air flow. The residue was diluted with CH₂Cl₂, washed sequentially with aqueous saturated CuSO₄ solution, water, and brine. The organic solution was dried over sodium sulfate, filtered, and concentrated under reduce pressure to produce the crude mesylate **21** which was used directly in the next step.

The mesylate **21** was dissolved in 8.8 mL ethanol and a pinch of bromocresol green was added as an indicator. To the mixture was added sodium cyanoborohydride (0.056 g, 0.89 mmol) followed by addition of 0.5 M HCl in methanol (3.6 mL, 1.8 mmol). The resulting reaction mixture was stirred at room temperature for 15 minutes. A second batch of sodium cyanoborohydride (0.056 g, 0.886 mmol) and 0.5 M HCl in methanol (3.6 mL, 1.772 mmol) were added, and the reaction mixture was stirred at room temperature for 30 h before being quenched with saturated NaHCO₃ solution. The aqueous mixture was extracted with ethyl acetate and combined organic extracts were washed with water, dried over sodium sulfate, filtered, and concentrated under reduce

pressure. Purification on silica gel flash column chromatography (toluene/ethyl acetate = 20:1 to 5:1) furnished 310 mg (70% yield for 2 steps) of 2-deoxy β -*C*-glycoside **22**.


 $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{23}} = -26.0^{\circ} (c = 0.1, \text{CHCl}_3);$

FT-IR (thin film): 3407, 2934, 2883, 1682, 1453, 1326, 1027, 698 cm⁻¹;

¹**H NMR** (**600 MHz, MHz, CDCl**₃) δ 7.88 (d, *J*=8.8 Hz, 1 H), 7.74 (d, *J*=8.8 Hz, 1 H), 7.31 - 7.50 (m, 15 H), 5.04 - 5.09 (m, 2 H), 5.02 (s, 1 H), 4.81 - 4.92 (m, 3 H), 4.68 - 4.72 (m, 2 H), 4.41 (d, *J*=9.5 Hz, 1 H), 4.34 (s, 1 H), 3.96 (d, *J*=19.6 Hz, 1 H), 3.84 (s, 3 H), 3.80 (d, *J*=3.5 Hz, 1 H), 3.72 (s, 3 H), 3.57 (d, *J*=6.6 Hz, 1 H), 3.54 (d, *J*=3.1 Hz, 1 H), 3.38 (dd, *J*=19.8, 5.9 Hz, 1 H), 3.18 (dd, *J*=13.4, 2.9 Hz, 1 H), 3.13 (s, 3 H), 2.75 (d, *J*=13.4 Hz, 1 H), 2.15 (dd, *J*=14.9, 2.9 Hz, 1 H), 1.90 - 2.00 (m, 2 H), 1.81 - 1.88 (m, 2 H), 1.38 (dd, *J*=6.4 Hz, 3 H), 1.32 (s, 3 H) ppm;

¹³C NMR (150 MHz, CDCl₃) δ 205.48, 150.72, 150.59, 150.52, 138.77, 137.86, 137.06, 134.04, 130.29, 129.03, 128.96, 128.88, 128.76, 128.73, 128.57, 128.41, 128.33, 128.18, 127.27, 125.56, 123.86, 121.72, 119.87, 81.52, 80.98, 79.55, 78.72, 78.48, 76.30, 75.40, 72.57, 70.78, 65.02, 63.55, 61.76, 44.69, 43.38, 38.87, 37.29, 30.39, 25.74, 18.34 ppm;

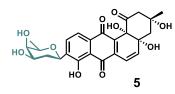
ESI-HRMS [M+Na]⁺ calculated for C₄₉H₅₄NaO₁₃S 905.3183, found 905.3214.

To a solution of 2-deoxy β -*C*-glycoside **22** (50 mg, 0.057 mmol) in 1.6 mL of mixed solvents (EtOAc/MeOH, 1/1, v/v) was added 10% palladium on carbon (60 mg, 0.057 mmol). The reaction mixture was evacuated and filled with hydrogen for five times and then stirred at room temperature under positive hydrogen pressure (40 psi) for 50 h.

The reaction mixture was then diluted with CH₂Cl₂/MeOH (10/1, v/v), filtered through celite, and concentrated. The residue was purified via preparative TLC (CH₂Cl₂/MeOH, 10/1, v/v) to afford 31 mg (89% yield) of compound **S8**.

To a solution of compound **S8** (29.1 mg, 0.0476 mmol) in 1 mL DMF cooled at 0 °C were added Cs_2CO_3 (18.6 mg, 0.0571 mmol) and benzyl bromide (8.5 µL, 0.071 mmol). The reaction mixture was stirred at room temperature for 5 h and then quenched with a pinch of solid ammonium chloride. DMF was removed by air flow and the residue was purified by using preparative TLC in $CH_2Cl_2/MeOH$ (10/1, v/v) to furnish 21.7 mg (65% yield) of the desired product **23**.

 $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{23}} = -100.0^{\circ} (c = 0.1, \text{CHCl}_3);$


FT-IR (thin film): 3407, 2934, 2978, 1716, 1331, 1166, 1041, 905, 530 cm⁻¹;

¹**H NMR (600 MHz, CDCl**₃) δ 7.85 (d, *J*=8.8 Hz, 1 H), 7.67 (d, *J*=8.8 Hz, 1 H), 7.38 - 7.48 (m, 5 H), 5.23 (s, 1 H), 5.08 - 5.14 (m, 2 H), 4.78 - 4.84 (m, 2 H), 4.13 - 4.18 (m, 2 H), 3.97 (d, *J*=19.4 Hz, 1 H), 3.77 - 3.83 (m, 1 H), 3.74 - 3.76 (m, 6 H), 3.63 - 3.67 (m, 1 H), 3.56 (d, *J*=6.8 Hz, 1 H),

3.39 (dd, *J*=19.8, 5.9 Hz, 1 H), 3.16 (s, 3 H), 2.77 - 2.83 (m, 2 H), 2.29 (d, *J*=7.9 Hz, 1 H), 2.09 - 2.14 (m, 1 H), 2.00 - 2.06 (m, 2 H), 1.83 (dd, *J*=14.7, 2.0 Hz, 1 H), 1.71 (q, *J*=12.7 Hz, 1 H), 1.34 (d, *J*=6.4 Hz, 3 H), 1.23 (s, 3 H) ppm;

¹³C NMR (150 MHz, CDCl₃) δ 206.11, 150.70, 150.57, 150.52, 137.75, 133.89, 130.31, 128.97, 128.62, 128.53, 126.66, 125.23, 123.93, 121.42, 119.98, 80.01, 78.53, 77.72, 77.08, 75.06, 74.83, 72.91, 71.20, 70.37, 63.32, 61.84, 50.44, 41.85, 39.07, 36.09, 30.70, 29.85, 17.66 ppm;

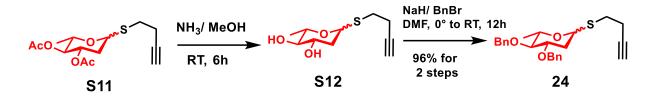
ESI-HRMS [M+Na]⁺ calculated for C₃₅H₄₂NaO₁₃S 725.2244, found 725.2236.

A solution of compound **23** (17 mg, 0.024 mmol) in 1.5 mL of acetonitrile was cooled at 0 °C. 96 μ L of stock solution of cerium ammonium nitrate in water (0.073 mmol, 3 eq.) was added (Note: the stock solution was prepared by adding 174 mg of cerium ammonium nitrate in 400 μ L water). The reaction mixture was stirred at 0 °C for

35 min before being diluted with 2 mL ethyl acetate. 0.5 mL of ice cooled saturated NaHCO₃ was added and the resulting mixture was stirred for 5 minutes. The organic layer was separated and passed through a small pad of Na₂SO₄, concentrated under reduce pressure, and kept in vacuum for 10 minutes to give the crude compound **S9**. This crude material was dissolved in 0.3 mL of mixed solvents (EtOAc/MeOH, 1:1, v/v) and 10% palladium on carbon (5.1 mg, 0.0048 mmol) was added. The mixture was evacuated and filled with hydrogen for three times. After being stirring at room temperature under positive hydrogen pressure for 1 h, the reaction mixture was diluted with methanol, filtered through celite, and concentrated under reduced pressure to furnish compound **S10**. The crude **S10** was dissolved in 0.93 mL of dioxane and *N,N*-diisopropylethylamine (8.5 µL, 0.048 mmol) was added. After being stirred at 40 °C for 1 h, the reaction mixture was cooled down. Dioxane was removed by air flow and the residue was purified by preparative TLC in CH₂Cl₂/MeOH (10/1, v/v) to furnish 8.1 mg of analogue (**5**) as dark red solid (69% yield for 3 steps).

 $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{23}} = 42.3^{\circ} (c = 0.1, \text{CH}_3\text{OH});$

FT-IR (thin film): 3384, 2961, 2923, 2853, 1725, 1637, 1284, 1259, 1080, 652 cm⁻¹;


¹**H NMR (600 MHz, CD₃OD)** δ 7.99 (d, *J*=7.7 Hz, 1 H), 7.59 (d, *J*=7.9 Hz, 1 H), 6.87 (d, *J*=9.7 Hz, 1 H), 6.40 (d, *J*=9.7 Hz, 1 H), 4.84 - 4.87 (m, 1 H), 3.86 - 3.90 (m, 1 H), 3.70 - 3.75 (m, 1 H), 3.61 (d, *J*=2.8 Hz, 1 H), 2.82 (d, *J*=12.8 Hz, 1 H), 2.66 (dd, *J*=13.0, 2.4 Hz, 1 H), 2.06 - 2.10 (m, 1 H), 2.02 - 2.05 (m, 2 H), 1.61 (q, *J*=11.9 Hz, 1 H), 1.33 (d, *J*=6.4 Hz, 3 H), 1.24 (s, 3 H) ppm;

¹³C NMR (150 MHz, CD₃OD) δ 206.94, 189.88, 183.63, 158.77, 146.24, 140.48, 139.88, 139.67, 134.93, 132.16, 120.02, 118.22, 115.36, 82.10, 78.65, 77.71, 76.11, 72.76, 71.84, 71.10, 53.26, 44.73, 35.35, 30.17, 17.71 ppm;

ESI-HRMS [M+Na]⁺ calculated for C₂₅H₂₆NaO₁₀ 509.1424, found 509.1424.

4. Synthesis of Analogue (6)

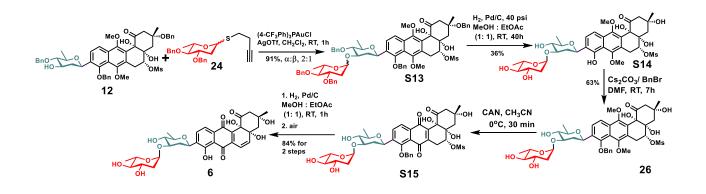
4.1. Synthesis of Donor 24

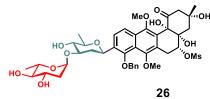
Bno OBn

To *S*-but-3-ynyl 3,4-di-*O*-acetyl-L-olivoside donor **S11**^{S3} (150 mg, 0.50 mmol) was added 1.1 mL of 7.0 N NH₃ in MeOH and the resulting mixture was stirred at room temperature for 6 h. Solvent was removed under reduced pressure and

at room temperature for 6 h. Solvent was removed under reduced pressure and the residue was azeotroped with toluene to produce crude diol **S12**. This crude **S12** was dissolved in 1.7 mL DMF and cooled at 0 °C. NaH (60% in mineral oil, 60 mg, 1.5 mmol) was added and the reaction mixture was stirred for 45 min at 0 °C. Next, benzyl bromide (0.15 mL, 1.25 mmol) was added and the resulting mixture was stirred for 12 h at room temperature before being quenched with water. The aqueous mixture was extracted with ethyl acetate and combined organic extracts were washed with water, dried over sodium sulfate, filtered, and concentrated in vacuo. Purification on flash column chromatography (hexanes/ethyl acetate, 10/1, v/v) provided 189 mg of corresponding *S*-but-3-ynyl 3,4-di-*O*-benzyl-L-olivoside donor **24** (96% yield for 2 steps).

 $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{23}} = -82.3^{\circ} (c = 0.3, \text{CHCl}_3);$


FT-IR (thin film): 3289, 3029, 2929, 2858, 1496, 1453, 1091, 734, 697 cm⁻¹;


¹**H NMR** (**600 MHz**, **CDCl**₃) δ 7.29 - 7.40 (ovrlp, 10 H, α and β), 5.41 (d, *J*=5.5 Hz, 1 H, H¹ α), 4.98 (ovrlp, 1 H, α and β), 4.57 - 4.73 (ovrlp, 3 H, α and β and 1H, H³ β), 4.13 (dq, *J*=9.4, 6.2 Hz, 1 H, H⁵ α), 3.91 (ddd, *J*=11.6, 8.6, 4.8 Hz, 1 H, H³ α), 3.66 (ddd, *J*=11.2, 8.6, 5.1 Hz, 1 H, H¹ β), 3.39 (dq, *J*=9.3, 6.1 Hz, 1 H, H⁵ β), 3.17 (ovrlp, 1 H, H⁴ α and H⁴ β), 2.91 - 2.97 (m, 1 H, β), 2.77 - 2.86 (m, 2 H, α), 2.67 - 2.73 (m, 1 H, β), 2.47 - 2.64 (ovrlp, 2 H, α and β), 2.41 (ddd, *J*=12.7, 5.1, 1.7 Hz, 1 H, H² β), 2.31 - 2.36 (m, 1 H, H² α), 2.02 - 2.09 (ovrlp, 1 H, α and β and 1 H, H² α), 1.71 - 1.79 (q, 1 H, H² β), 1.37 (d, *J*=6.1 Hz, 3 H, C⁶ – CH₃ β), 1.33 (d, *J*=6.2 Hz, 3 H, C⁶ – CH₃ α) ppm;

¹³C NMR (150 MHz, CDCl₃) δ 138.72, 138.64, 138.60, 138.47, 128.69, 128.66, 128.64, 128.61, 128.33, 128.21, 128.00, 127.95, 127.94, 127.90, 84.61, 83.65, 82.86, 80.73, 80.56, 79.88, 75.90, 75.61, 75.41, 72.04, 71.72, 69.75, 69.72, 67.93, 37.38, 36.30, 30.13, 29.96, 20.69, 20.16, 18.66, 18.31 ppm;

ESI-HRMS [M+Na]⁺ calculated for C₂₄H₂₈NaO₃S 419.1657, found 419.1667.

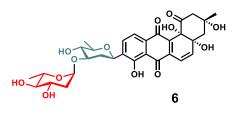
4.2. Synthesis of Analogue (6)

A mixture of *S*-but-3-ynyl 3,4-di-*O*-benzyl-L-olivoside donor **24** (33.6 mg, 0.085 mmol) and partially protected β -*C*-arylglycoside acceptor **12** (50 mg, 0.057 mmol) was azeotroped with 2 mL benzene and kept in high vacuum for 30 minutes. To this mixture were sequentially added 23 mg of freshly activated 4 Å molecular

sieves, silver triflate (1.5 mg, 0.0057 mmol) and a freshly prepared solution of gold catalyst in dry mmol) CH₂Cl₂ (prepared bv dissolving 2.0 mg (0.0028)of chloro[tris(paratrifluoromethylphenyl)phosphine]gold(I) in 0.56 mL CH₂Cl₂). The resulting mixture was stirred at room temperature for 1 h before being quenched with a pinch of solid NaHCO₃. The reaction mixture was diluted with CH₂Cl₂, filtered through small pad of Na₂SO₄, concentrated under vacuo, and purified using preparative TLC (hexanes/ethyl acetate, 2/1, v/v, with 1% MeOH) to afford 61.5 mg (91% yield) of mixture of inseparable anomers S13 (α/β , 2/1).

To **S13** (50 mg, 0.042 mmol) dissolved in 1.6 mL of EtOAc/MeOH (1/1, v/v) was added 10% palladium on carbon (45 mg, 0.042 mmol). The resulting mixture was evacuated and filled with hydrogen for five times and stirred at room temperature under positive hydrogen pressure (40 psi) for 40 h. The reaction mixture was diluted with CH₂Cl₂/MeOH (10/1, v/v), filtered through celite, concentrated, and purified via preparative TLC (CH₂Cl₂/MeOH, 10/1, v/v) to give 11.2 mg (36% yield) of α -disaccharide **S14**.

To a solution of **S14** (15.5 mg, 0.021 mmol) in 0.45 mL DMF cooled at 0 °C was added Cs₂CO₃ (8.2 mg, 0.025 mmol) followed by addition of 22 μ L stock solution of benzyl bromide in DMF (0.031 mmol, 1.5 eq.) (Note: the stock solution was prepared by adding 40 μ L of benzyl bromide in 200 μ L DMF). The reaction mixture was stirred at room temperature for 7 h and quenched with a pinch of solid ammonium chloride. DMF was removed by air flow and the residue was purified by using preparative TLC in CH₂Cl₂/MeOH (10/1, v/v) to furnish 11.1 mg (63% yield) of the desired product **26** (α only).


 $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{23}} = -69.3^{\circ} (c = 0.1, \text{CHCl}_3);$

FT-IR (thin film): 3391, 2923, 2856, 1721, 1330, 1041, 973, 908, 529 cm⁻¹;

¹**H NMR (600 MHz, CD₃OD)** δ 7.88 (d, *J*=8.8 Hz, 1 H), 7.62 (d, *J*=8.8 Hz, 1 H), 7.47 - 7.50 (m, 2 H), 7.41 - 7.45 (m, 2 H), 7.35 - 7.39 (m, 1 H), 5.04 - 5.08 (m, 2 H), 4.99 (d, *J*=3.1 Hz, 1 H), 4.89 - 4.92 (m, 2 H), 3.90 - 3.95 (m, 1 H), 3.82 - 3.87 (m, 2 H), 3.79 (s, 3 H), 3.77 (s, 3 H), 3.56 - 3.66 (m, 2 H), 3.27 - 3.30 (m, 1 H), 3.18 - 3.21 (m, 3 H), 3.13 (t, *J*=9.0 Hz, 1 H), 2.97 (t, *J*=9.2 Hz, 1 H), 2.80 (d, *J*=12.7 Hz, 1 H), 2.59 (dd, *J*=12.7, 2.8 Hz, 1 H), 2.22 (dd, *J*=12.6, 3.6 Hz, 1 H), 1.93 - 2.04 (m, 3 H), 1.55 - 1.65 (m, 2 H), 1.31 (d, *J*=6.1 Hz, 3 H), 1.28 (d, *J*=6.2 Hz, 3 H), 1.20 (s, 3 H) ppm;

¹³C NMR (150 MHz, CD₃OD) δ 207.17, 151.68, 151.52, 151.37, 138.92, 134.78, 131.26, 129.72, 129.67, 129.66, 129.25, 128.92, 126.15, 124.59, 123.52, 120.45, 95.16, 82.07, 79.25, 79.17, 79.08, 79.03, 78.08, 77.89, 76.66, 76.10, 73.10, 69.44, 69.34, 63.60, 62.05, 51.52, 43.04, 39.39, 38.31, 37.98, 30.97, 30.49, 18.81, 18.24 ppm;

ESI-HRMS [M+Na]⁺ calculated for C₄₁H₅₂NaO₁₆S 855.2874, found 855.2869.

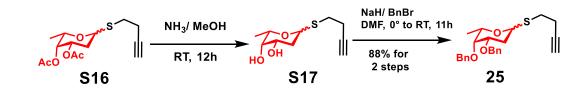
To a solution of **26** (10 mg, 0.012 mmol) in 0.76 mL acetonitrile cooled at 0 $^{\circ}$ C was added 48 μ L of stock solution of cerium ammonium nitrate in water (0.036 mmol, 3 eq.) was added (Note: the stock solution was prepared by adding 174 mg of cerium ammonium nitrate in 400 μ L water). The reaction mixture was stirred at 0 $^{\circ}$ C for 30 min before being diluted with 2 mL ethyl

acetate. 0.5 mL of ice cooled saturated NaHCO₃ was added and the resulting mixture was stirred for 5 minutes. The organic layer was separated and passed through a small pad of Na₂SO₄, concentrated under reduce pressure, and kept in vacuum for 10 minutes to give the crude compound **S15**. This crude material was dissolved in 0.15 mL of mixed solvents (EtOAc/MeOH, 1:1, v/v) and 10% palladium on carbon (2.6 mg, 0.0024 mmol) was added. The mixture was evacuated and filled with hydrogen for three times. After being stirring at room temperature under positive hydrogen pressure for 1 h, the reaction mixture was diluted with methanol, filtered through celite, and concentrated under reduced pressure. The residue was purified through preparative TLC in CH₂Cl₂/MeOH (10/1, v/v) to afford 6.2 mg of analogue (**6**) as dark red solid (84% yield for 2 steps).

 $[\alpha]_{D}^{23} = 99.3^{\circ} (c = 0.1, CH_{3}OH);$

FT-IR (thin film): 3380, 2958, 2921, 2854, 1725, 1636, 1260, 1055, 476 cm⁻¹;

¹**H NMR (600 MHz, CD₃OD)** δ 7.86 (d, *J*=7.9 Hz, 1 H), 7.58 (d, *J*=7.9 Hz, 1 H), 6.87 (d, *J*=9.7 Hz, 1 H), 6.40 (d, *J*=9.7 Hz, 1 H), 5.04 (d, *J*=3.1 Hz, 1 H), 4.85 - 4.87 (m, 1 H), 3.91 - 3.97 (m, 1 H), 3.85 (ddd, *J*=11.6, 9.0, 5.0 Hz, 1 H), 3.73 - 3.79 (m, 1 H), 3.45 - 3.51 (m, 1 H), 3.11 - 3.18 (m, 1 H), 2.96 (t, *J*=9.3 Hz, 1 H), 2.82 (d, *J*=12.8 Hz, 1 H), 2.67 (dd, *J*=13.0, 2.6 Hz, 1 H), 2.56 (ddd,


J=12.7, 4.8, 1.7 Hz, 1 H), 1.95 - 2.08 (m, 3 H), 1.61 - 1.67 (m, 1 H), 1.38 (d, *J*=6.1 Hz, 3 H), 1.27 (d, *J*=6.1 Hz, 3 H), 1.24 (s, 3 H) ppm;

¹³C NMR (150 MHz, CD₃OD) δ 206.91, 189.82, 183.58, 158.75, 146.29, 140.46, 139.89, 139.13, 134.37, 132.26, 120.02, 118.19, 115.43, 95.33, 82.09, 79.00, 78.64, 77.83, 77.79, 77.68, 76.65, 72.32, 69.42, 69.39, 53.26, 44.72, 39.40, 37.55, 30.76, 30.17, 18.79, 18.16 ppm;

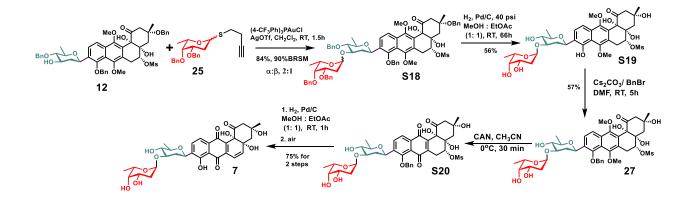
ESI-HRMS [M+Na]⁺ calculated for C₃₁H₃₆NaO₁₃ 639.2054, found 639.2084.

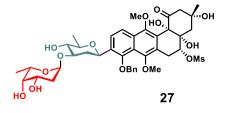
5. Synthesis of Analogue (7)

5.1. Synthesis of Donor 25

To *S*-but-3-ynyl 3,4-di-*O*-acetyl-L-olioside donor **S16**^{S3} (120 mg, 0.40 mmol) was added 0.86 mL of 7.0 N NH₃ in MeOH and the resulting mixture was stirred at room temperature for 12 h. Solvent was removed under reduced pressure and the residue was azeotroped with toluene to produce crude diol **S17**. This crude **S17** was dissolved in 1.3 mL DMF and cooled at 0 °C. NaH (60% in mineral oil,

48 mg, 1.2 mmol) was added and the reaction mixture was stirred for 45 min at 0 $^{\circ}$ C. Next, benzyl bromide (0.12 mL, 1.0 mmol) was added and the resulting mixture was stirred for 12 h at room temperature before being quenched with water. The aqueous mixture was extracted with ethyl acetate and combined organic extracts were washed with water, dried over sodium sulfate, filtered, and concentrated in vacuo. Purification on flash column chromatography (hexanes/ethyl acetate, 10/1, v/v) provided 139 mg of corresponding *S*-but-3-ynyl 3,4-di-*O*-benzyl-L-olioside donor **25** (88% yield for 2 steps).


 $[\alpha]_{D}^{22} = -76.5^{\circ} (c = 0.3, \text{CHCl}_3);$


FT-IR (thin film): 3291, 3030, 2931, 1496, 1454, 1362, 1059, 733, 697 cm⁻¹;

¹**H** NMR (600 MHz, CDCl₃) δ 7.29 - 7.45 (ovrlp, 10 H, α and β), 5.55 (d, *J*=5.7 Hz, 1 H, H¹ α), 4.97 - 5.04 (ovrlp, 1 H, α and β), 4.70 - 4.77 (ovrlp, 1 H, α and β), 4.54 - 4.69 (ovrlp, 2 H, α and β and 1H, H¹ β), 4.17 (q, *J*=6.5 Hz, 1 H, H⁵ α), 3.88 (ddd, *J*=12.2, 4.4, 2.5 Hz, 1 H, H³ α), 3.64 (s, 1 H, H⁴ α), 3.60 (ddd, *J*=11.6, 4.6, 2.6 Hz, 1 H, H³ β), 3.55 - 3.58 (m, 1 H, H⁴ β), 3.41 - 3.48 (m, 1 H, H⁵ β), 2.96 (ddd, *J*=13.3, 8.5, 6.6 Hz, 1 H, β), 2.77 - 2.86 (ovrlp, 1 H, α and β), 2.66 - 2.74 (m, 1 H, α), 2.50 - 2.62 (ovrlp, 2 H, α and β and 1 H, H² α), 2.21 (q, *J*=11.8 Hz, 1 H, H² β), 2.07 - 2.14 (m, 1 H, H² β), 2.04 - 2.06 (ovrlp, 1 H, α and β), 2.01 - 2.04 (m, 1 H, H² α), 1.25 (d, *J*=6.4 Hz, 3 H, C⁶ - CH₃ β), 1.22 (d, *J*=6.4 Hz, 3 H, C⁶ - CH₃ α) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 138.86, 138.77, 138.38, 128.52, 128.49, 128.43, 128.42, 128.39, 128.35, 128.24, 128.21, 128.16, 127.70, 127.66, 127.59, 127.47, 127.36, 127.31, 82.95, 82.77, 81.15, 80.13, 78.87, 75.91, 75.01, 74.47, 74.46, 74.25, 70.48, 70.19, 69.37, 69.27, 67.20, 32.05, 30.93, 29.95, 29.44, 20.42, 19.93, 17.65, 17.21 ppm;

ESI-HRMS [M+Na]⁺ calculated for C₂₄H₂₈NaO₃S 419.1657, found 419.1655.

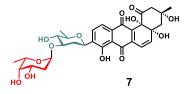
5.2. Synthesis of Analogue (7)

A mixture of *S*-but-3-ynyl 3,4-di-*O*-benzyl-L-olioside donor **25** (33.6 mg, 0.085 mmol) and partially protected β -*C*-arylglycoside acceptor **12** (50 mg, 0.057 mmol) was azeotroped with 2 mL benzene and kept in high vacuum for 30 minutes. To this mixture were sequentially added 23 mg of freshly activated 4 Å molecular sieves, silver triflate (1.5 mg, 0.0057 mmol) and

a freshly prepared solution of gold catalyst in dry CH_2Cl_2 (prepared by dissolving 2.0 mg (0.0028 mmol) of chloro[tris(*para*-trifluoromethylphenyl)phosphine]gold(I) in 0.56 mL CH_2Cl_2). The resulting mixture was stirred at room temperature for 1.5 h before being quenched with a pinch of solid NaHCO₃. The reaction mixture was diluted with CH_2Cl_2 , filtered through small pad of Na₂SO₄, concentrated under vacuo, and purified using preparative TLC (hexanes/ethyl acetate, 2/1, v/v, with 1% MeOH) to afford 56.6 mg (84% yield) of mixture of inseparable anomers **S18** (α/β , 2/1).

To **S18** (50 mg, 0.042 mmol) dissolved in 1.6 mL of EtOAc/MeOH (1/1, v/v) was added 10% palladium on carbon (45 mg, 0.042 mmol). The resulting mixture was evacuated and filled with hydrogen for five times and stirred at room temperature under positive hydrogen pressure (40 psi) for 66 h. The reaction mixture was diluted with CH₂Cl₂/MeOH (10/1, v/v), filtered through celite, concentrated, and purified via preparative TLC (CH₂Cl₂/MeOH, 10/1, v/v) to give 17.4 mg (56% yield) of α -disaccharide **S19**.

To a solution of **S19** (17.3 mg, 0.023 mmol) in 0.5 mL DMF cooled at 0 °C was added Cs₂CO₃ (9.1 mg, 0.028 mmol) followed by addition of 25 μ L stock solution of benzyl bromide in DMF (0.031 mmol, 1.5 eq.) (Note: the stock solution was prepared by adding 40 μ L of benzyl bromide in 200 μ L DMF). The reaction mixture was stirred at room temperature for 5 h and quenched with a pinch of solid ammonium chloride. DMF was removed by air flow and the residue was purified by using preparative TLC in CH₂Cl₂/MeOH (10/1, v/v) to furnish 11 mg (57% yield) of the desired product **27** (α only).


 $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{23}} = -89.7^{\circ} (c = 0.1, \text{CHCl}_3);$

FT-IR (thin film): 3393, 2976, 2938, 1718, 1329, 1167, 1040, 699, 639, 529 cm⁻¹;

¹**H** NMR (600 MHz, CD₃OD) δ 7.87 (d, *J*=9.0 Hz, 1 H), 7.61 (d, *J*=8.8 Hz, 1 H), 7.47 (d, *J*=7.2 Hz, 2 H), 7.40 - 7.45 (m, 2 H), 7.37 (d, *J*=7.3 Hz, 1 H), 5.05 (dd, *J*=16.0, 4.2 Hz, 3 H), 4.90 (d, *J*=4.6 Hz, 2 H), 4.20 (d, *J*=6.8 Hz, 1 H), 4.04 (dd, *J*=12.1, 1.8 Hz, 1 H), 3.84 (d, *J*=19.1 Hz, 1 H), 3.78 (s, 3 H), 3.76 (s, 3 H), 3.63 - 3.66 (m, 1 H), 3.55 - 3.61 (m, 2 H), 3.27 - 3.30 (m, 1 H), 3.19 (s, 3 H), 3.10 - 3.15 (m, 1 H), 2.79 (d, *J*=12.7 Hz, 1 H), 2.59 (dd, *J*=12.7, 2.8 Hz, 1 H), 2.23 (dd, *J*=12.38, 3.6 Hz, 1 H), 2.00 - 2.04 (m, 1 H), 1.92 - 1.96 (m, 1 H), 1.91 (d, *J*=3.7 Hz, 1 H), 1.67 (dd, *J*=12.7, 5.0 Hz, 1 H), 1.57 (q, *J*=12.5 Hz, 1 H), 1.30 (d, *J*=6.1 Hz, 3 H), 1.25 (d, *J*=6.6 Hz, 3 H), 1.18 (s, 3 H) ppm;

¹³C NMR (150 MHz, CD₃OD) δ 207.15, 151.65, 151.50, 151.35, 138.87, 134.77, 131.22, 129.66, 129.64, 129.25, 128.90, 126.16, 124.58, 123.51, 120.44, 95.34, 82.04, 79.25, 79.13, 79.06, 77.84, 77.77, 76.69, 76.08, 73.06, 72.40, 71.52, 67.67, 66.70, 63.60, 62.07, 51.50, 43.01, 38.32, 37.94, 33.47, 30.96, 30.49, 18.82, 17.26 ppm;

ESI-HRMS [M+Na]⁺ calculated for C₄₁H₅₂NaO₁₆S 855.2874, found 855.2867.

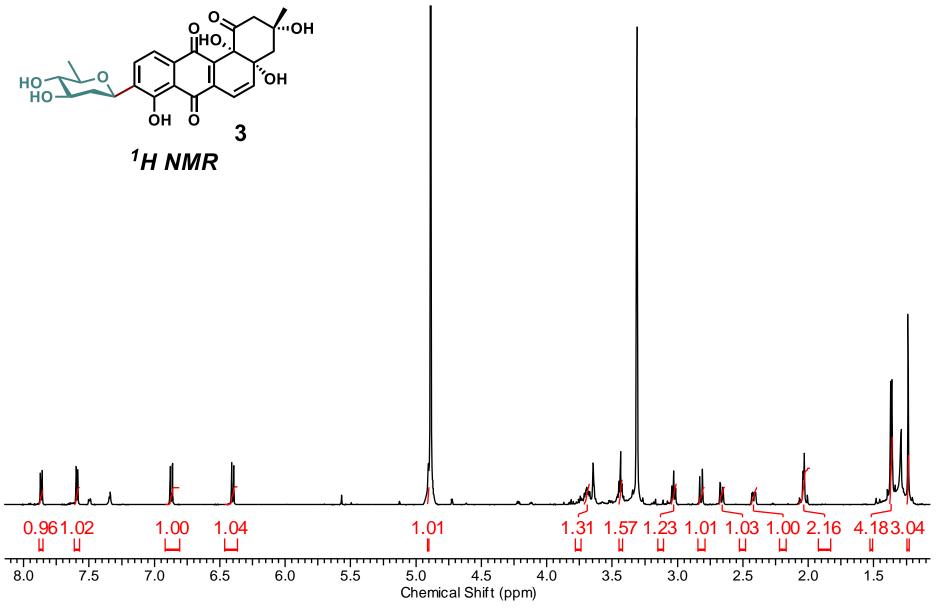
To a solution of **27** (15.2 mg, 0.0183 mmol) in 1.2 mL acetonitrile cooled at 0 $^{\circ}$ C was added 73 μ L of stock solution of cerium ammonium nitrate in water (0.055 mmol, 3 eq.) was added (Note: the stock solution was prepared by adding 174 mg of cerium ammonium nitrate in 400 μ L water). The reaction mixture was stirred at 0 $^{\circ}$ C for

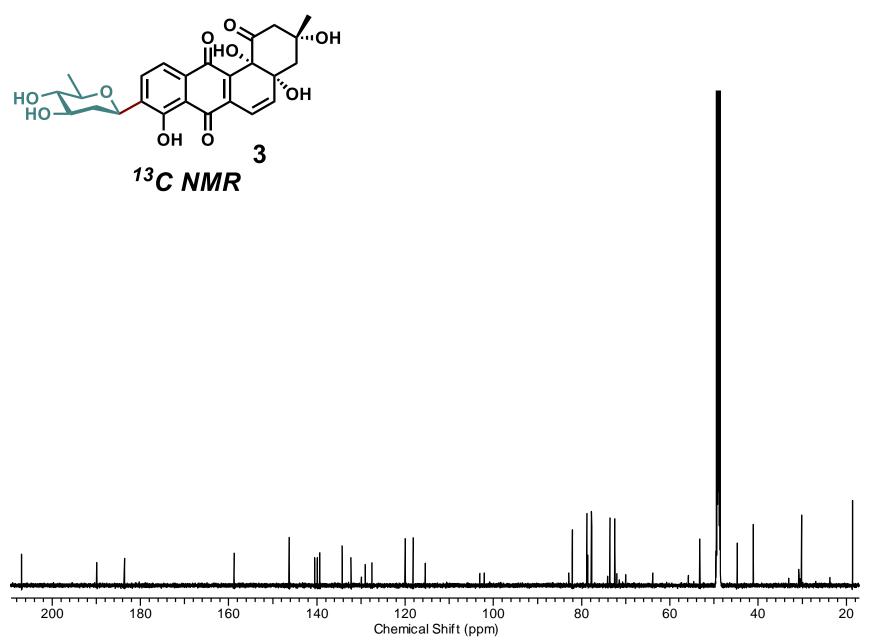
30 min before being diluted with 2 mL ethyl acetate. 0.5 mL of ice cooled saturated NaHCO₃ was added and the resulting mixture was stirred for 5 minutes. The organic layer was separated and passed through a small pad of Na₂SO₄, concentrated under reduce pressure, and kept in vacuum for 10 minutes to give the crude compound **S20**. This crude material was dissolved in 0.23 mL of mixed solvents (EtOAc/MeOH, 1:1, v/v) and 10% palladium on carbon (3.9 mg, 0.0037 mmol) was added. The mixture was evacuated and filled with hydrogen for three times. After being stirring at room temperature under positive hydrogen pressure for 1 h, the reaction mixture was diluted with methanol, filtered through celite, and concentrated under reduced pressure. The

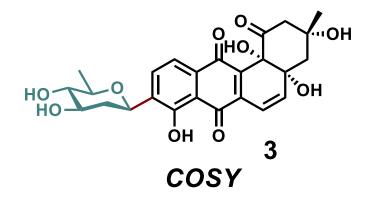
residue was purified through preparative TLC in CH₂Cl₂/MeOH (10/1, v/v) to afford 8.4 mg of analogue (7) as dark red solid (75% yield for 2 steps).

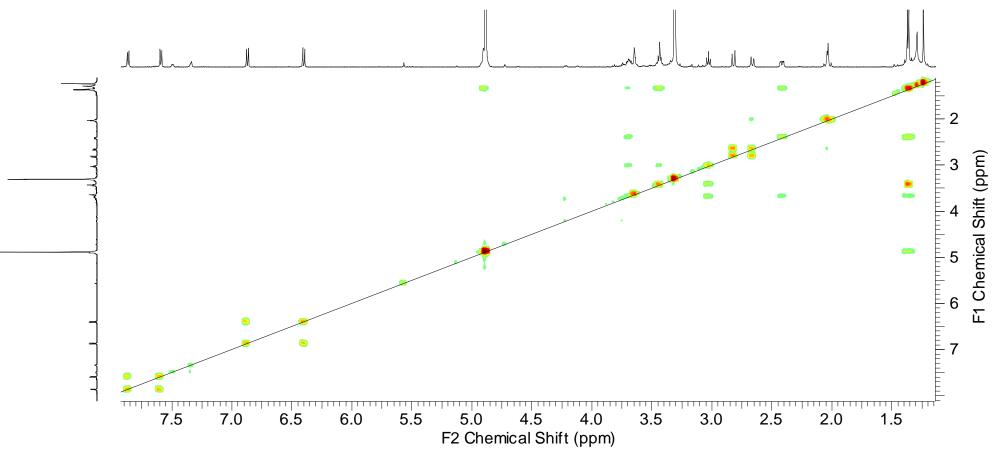
 $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{23}} = 41.3^{\circ} (c = 0.1, \text{CH}_3\text{OH});$

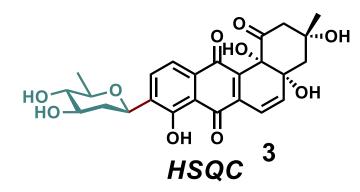
FT-IR (thin film): 3389, 2974, 2927, 1723, 1637, 1436, 1284, 1082, 1056, 598 cm⁻¹;

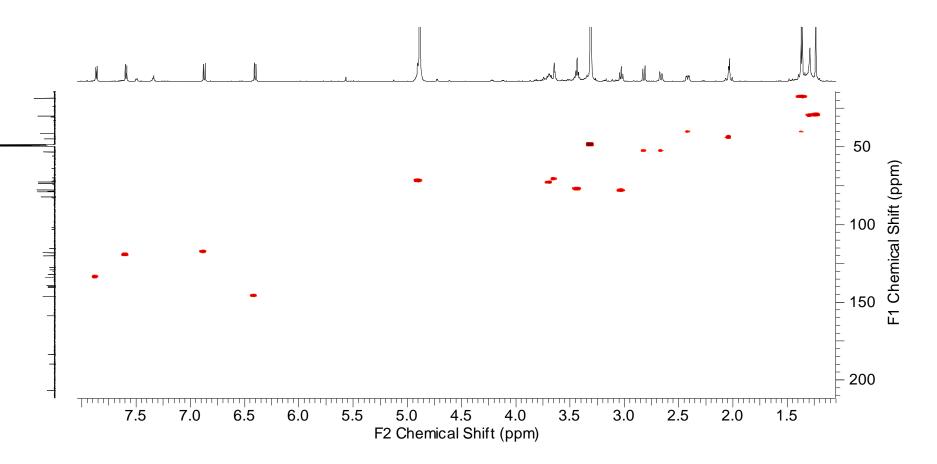

¹**H NMR (600 MHz, CD₃OD)** δ 7.85 (d, *J*=7.7 Hz, 1 H), 7.57 (d, *J*=7.9 Hz, 1 H), 6.87 (d, *J*=9.9 Hz, 1 H), 6.40 (d, *J*=9.7 Hz, 1 H), 5.07 (d, *J*=3.3 Hz, 1 H), 4.85 (s, 1 H), 4.21 (q, *J*=6.5 Hz, 1 H), 4.01 - 4.05 (m, 1 H), 3.72 - 3.79 (m, 1 H), 3.55 - 3.57 (m, 1 H), 3.45 - 3.51 (m, 1 H), 3.10 - 3.16 (m, 1 H), 2.80 - 2.88 (m, 1 H), 2.67 (dd, *J*=12.9, 2.7 Hz, 1 H), 2.55 (ddd, *J*=12.7, 4.8, 1.7 Hz, 1 H), 2.00 - 2.08 (m, 2 H), 1.93 (td, *J*=12.5, 3.9 Hz, 1 H), 1.68 (dd, *J*=12.7, 5 Hz, 1 H), 1.38 (d, *J*=6.1 Hz, 3 H), 1.23 - 1.25 (m, 7 H) ppm;

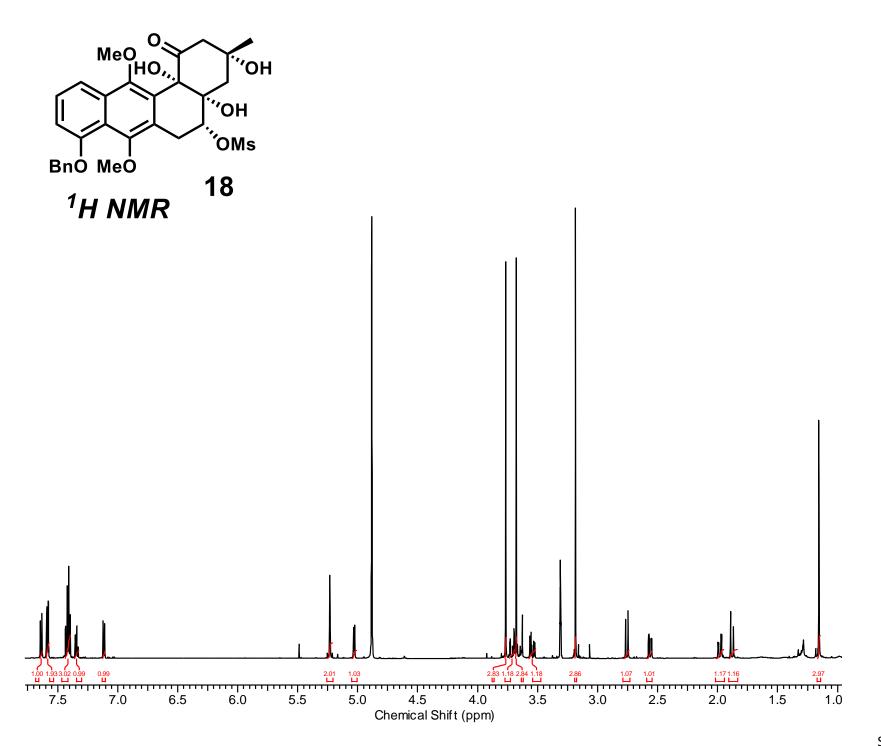

¹³C NMR (150 MHz, CD₃OD) δ 206.91, 189.82, 183.57, 158.74, 146.29, 140.45, 139.88, 139.14, 134.35, 132.23, 120.03, 118.19, 115.41, 95.50, 82.08, 78.62, 77.76, 77.69, 77.50, 76.70, 72.43, 72.32, 67.75, 66.70, 53.26, 44.71, 37.49, 33.48, 30.18, 18.81, 17.18 ppm;

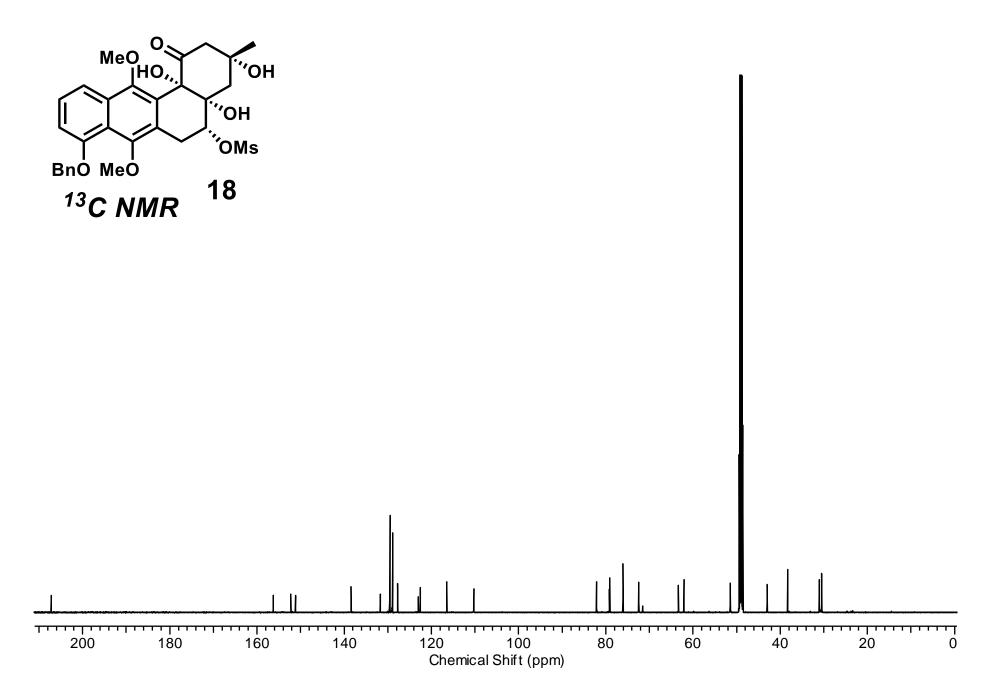

ESI-HRMS [M+Na]⁺ calculated for C₃₁H₃₆NaO₁₃ 639.2054, found 639.2068.

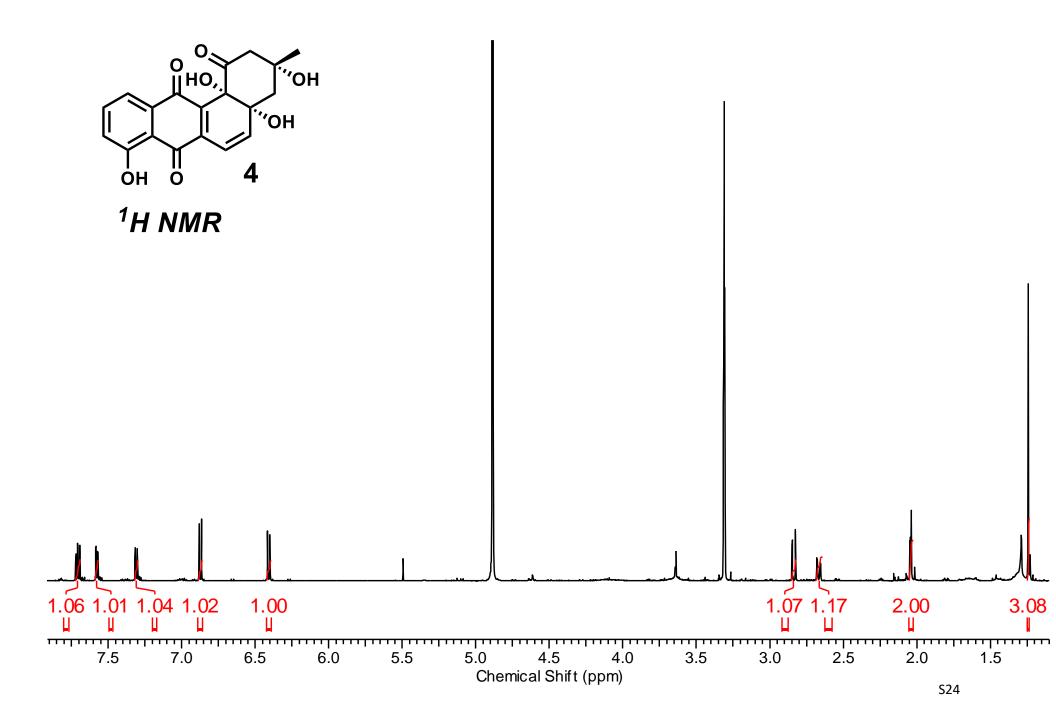

References

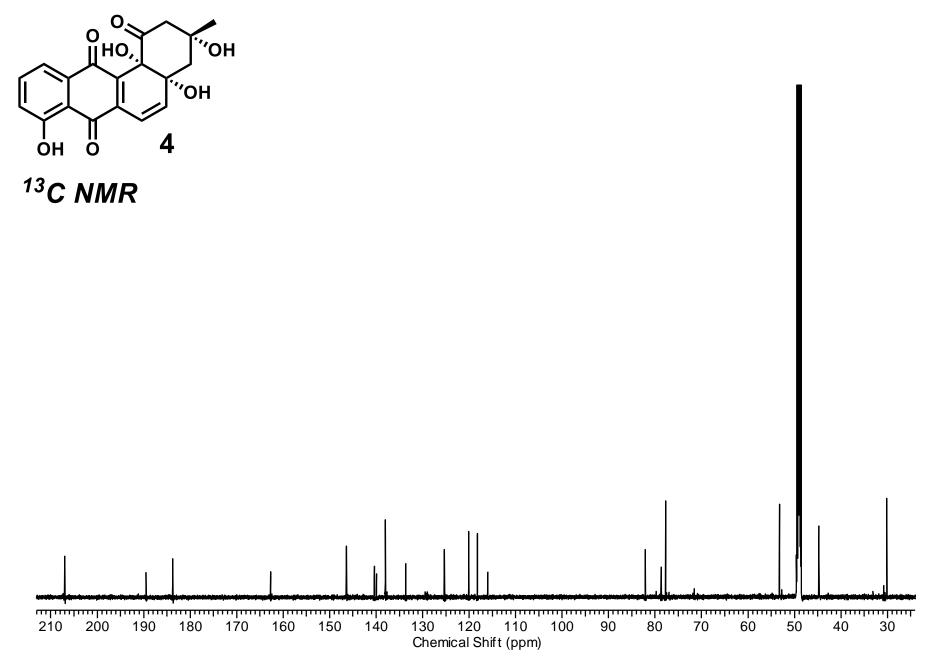

- S1 H. R. Khatri, H. Nguyen, J. K. Dunaway and J. Zhu, Chem. Eur. J., 2015, 21, 13553-13557.
- S2 K. Toshima, H. Nagai, Y. Ushiki and S. Matsumura, *Synlett*, 1998, 1007-1009.
- S3 S. Adhikari, K. N. Baryal, D. Zhu, X. Li and J. Zhu, ACS Catal., 2013, 3, 57-60.

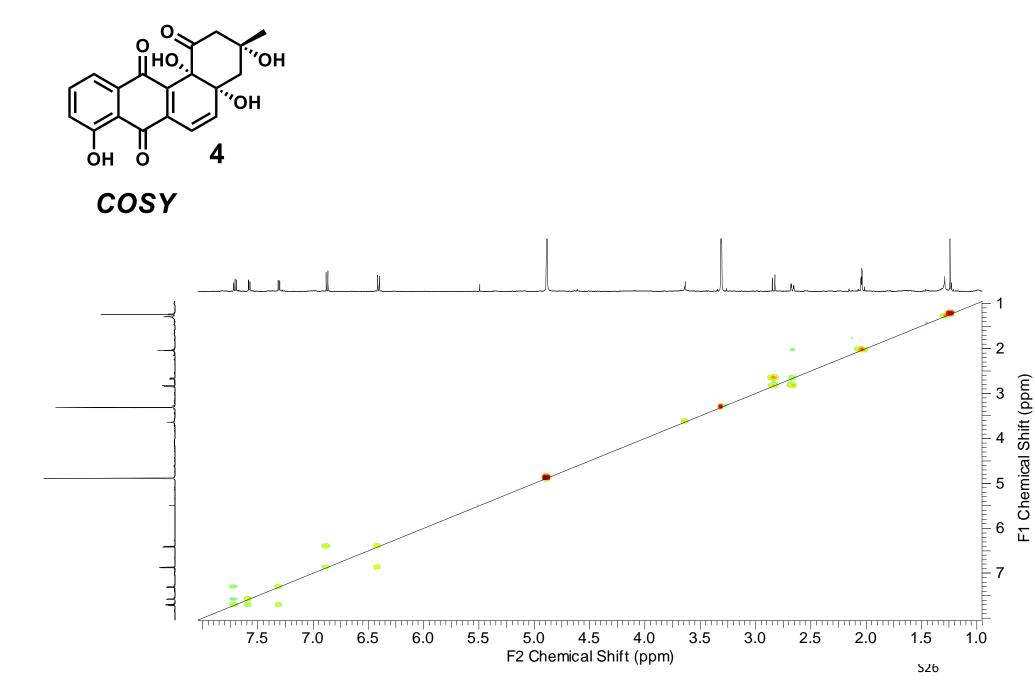


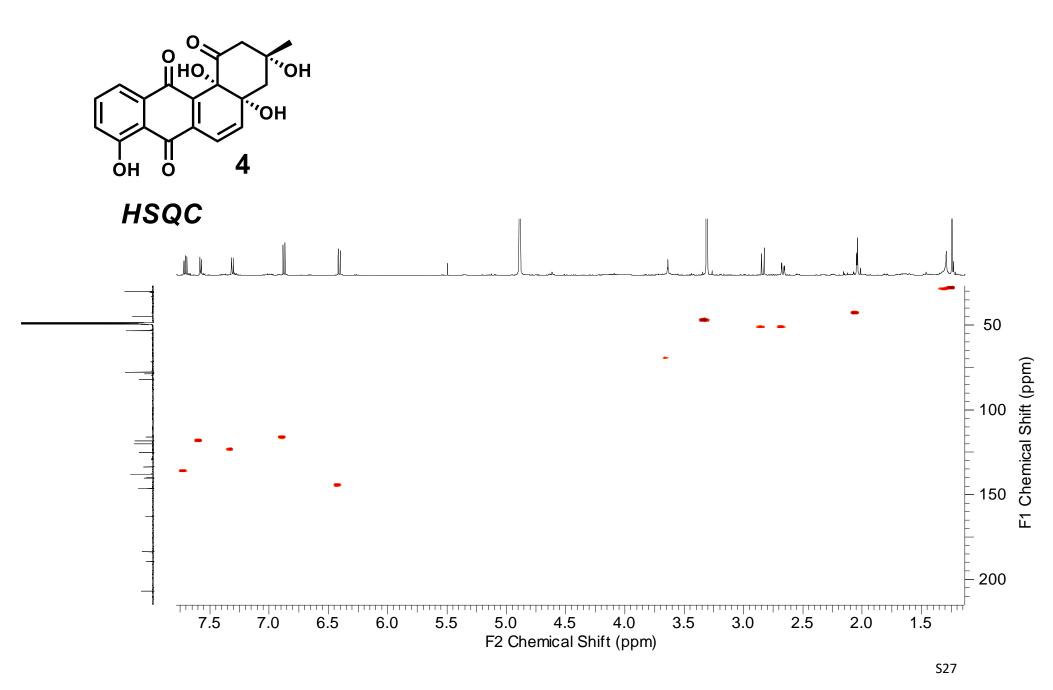


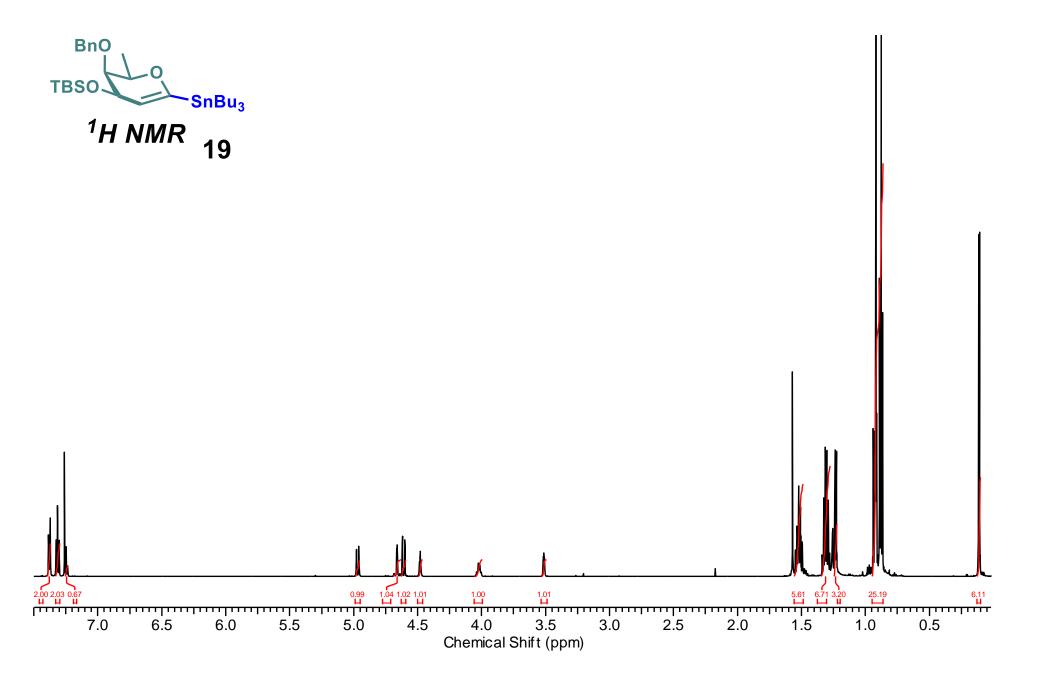


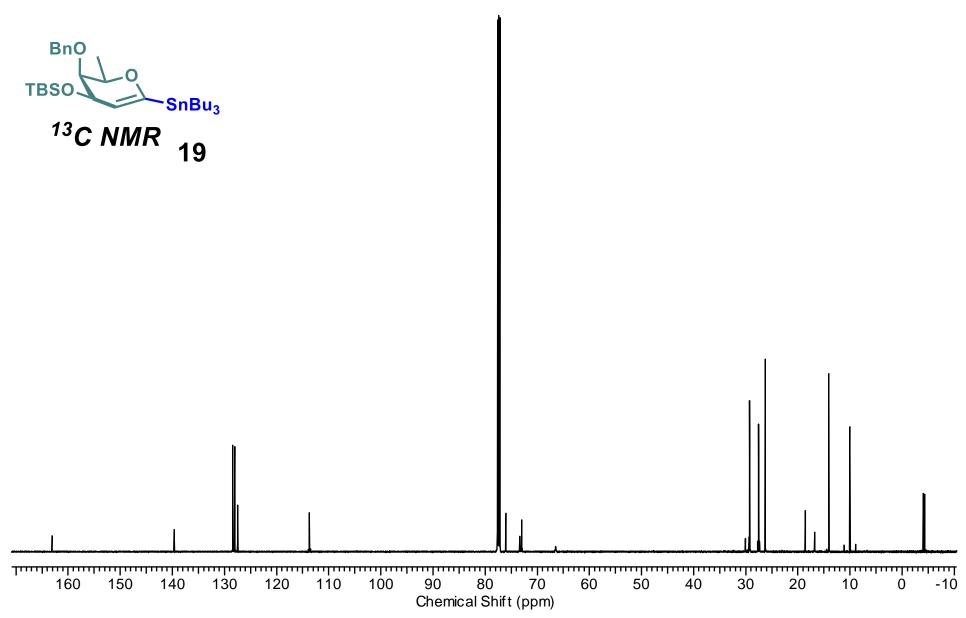


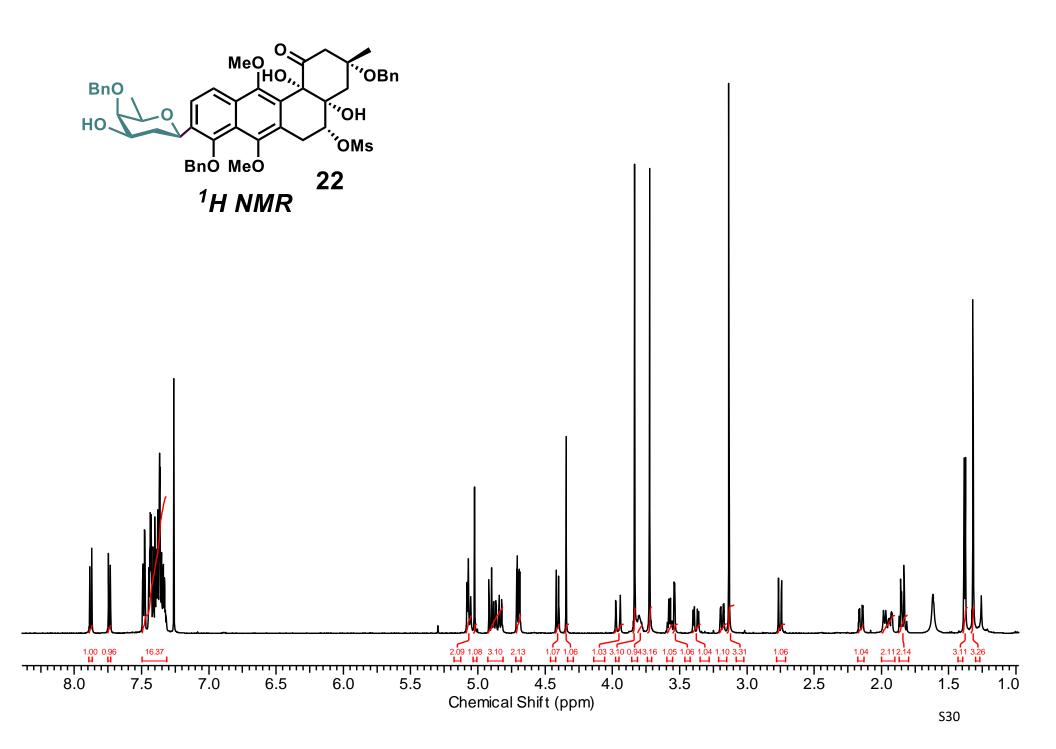


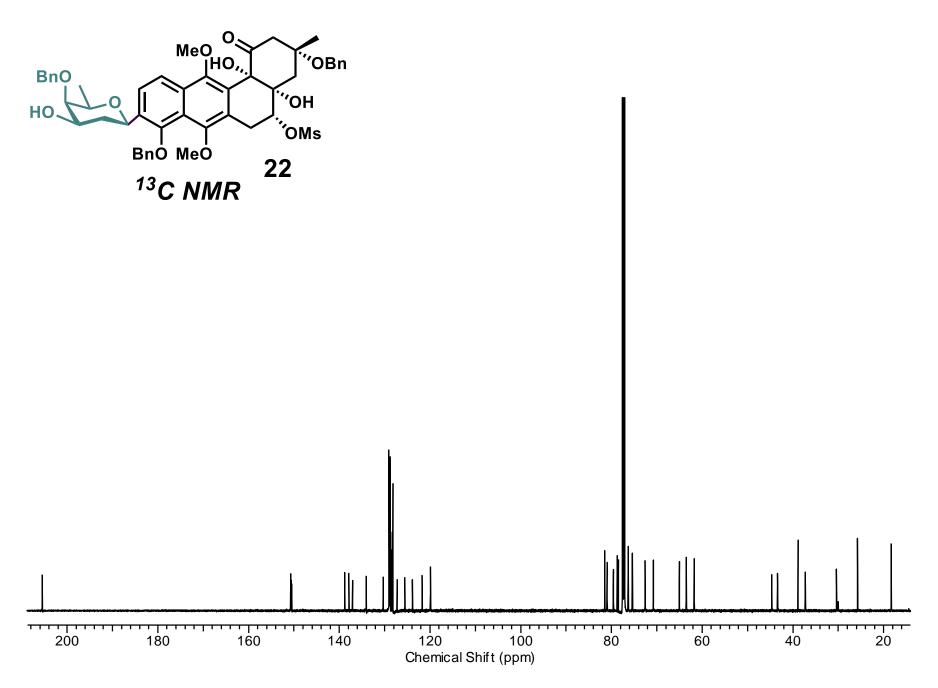


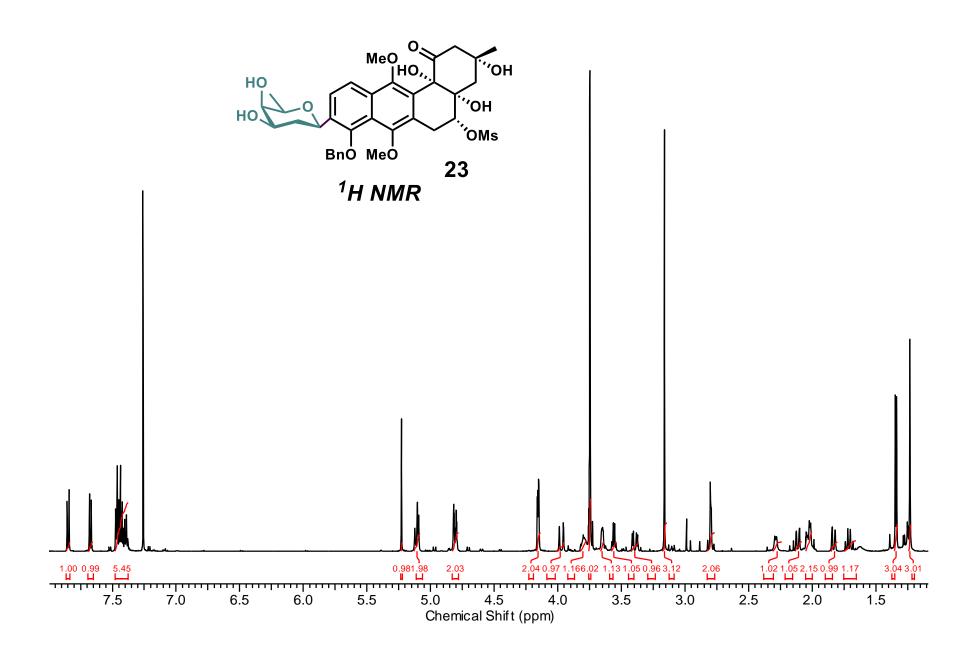


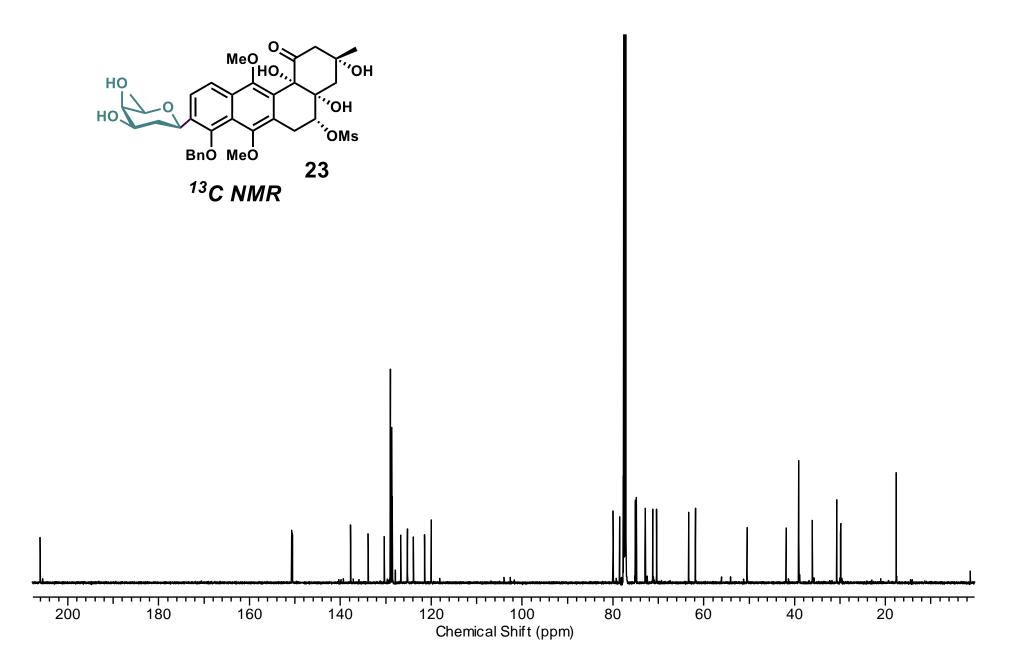


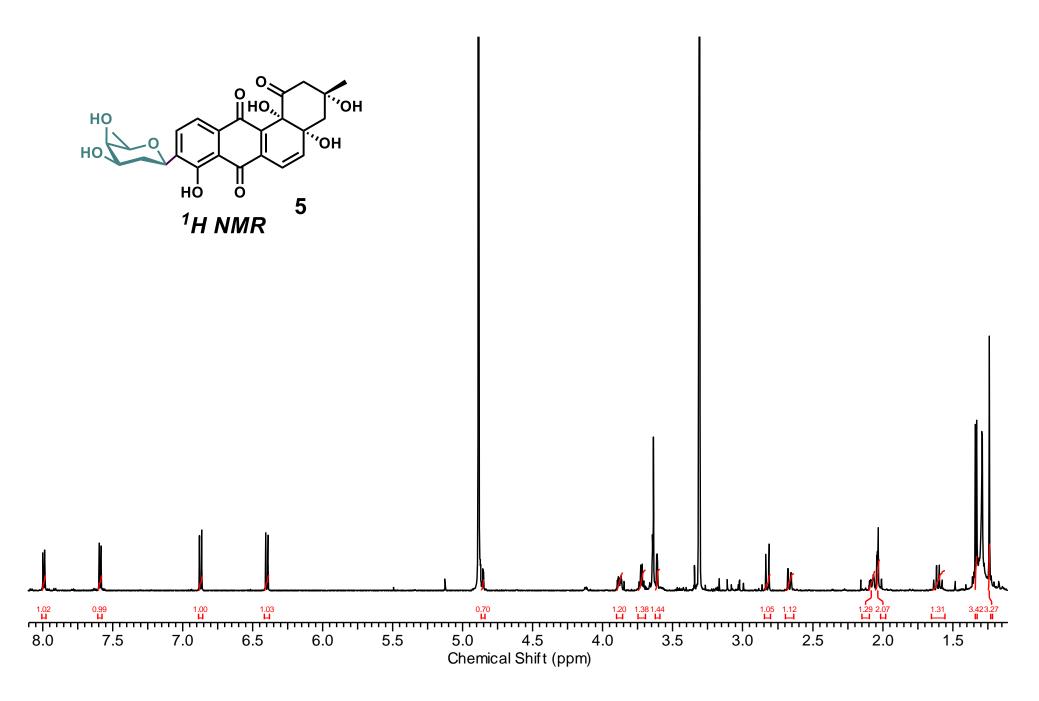


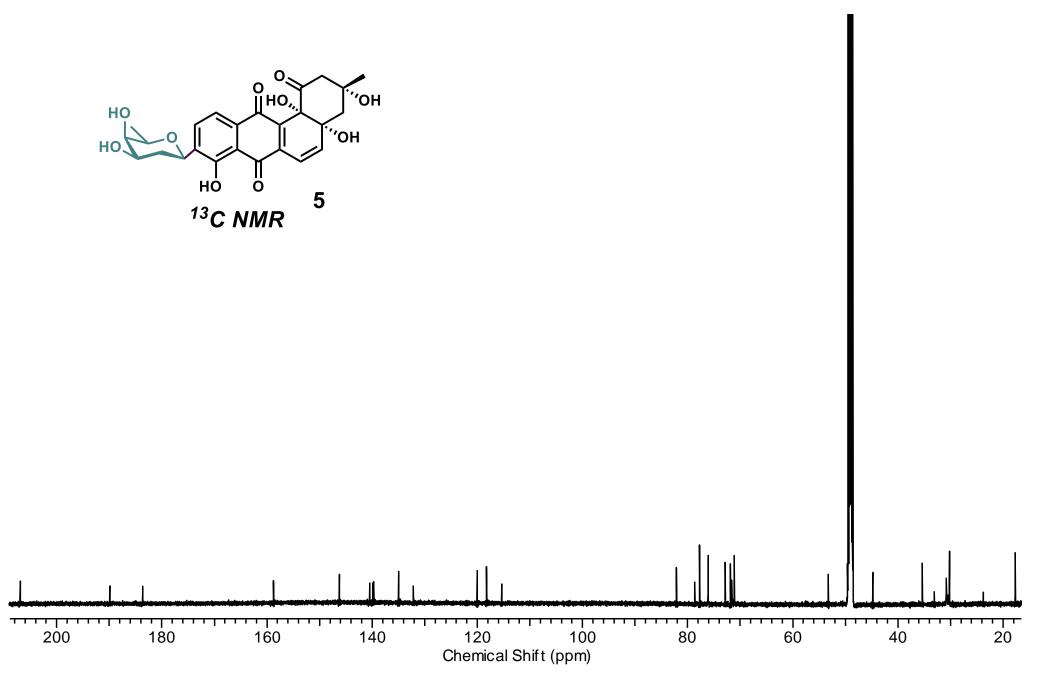


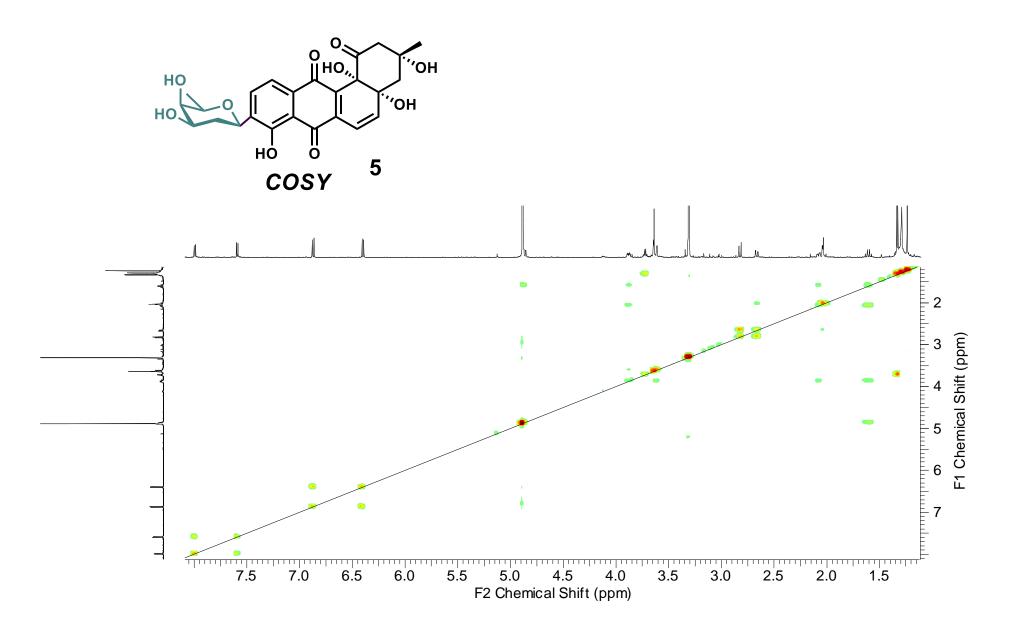


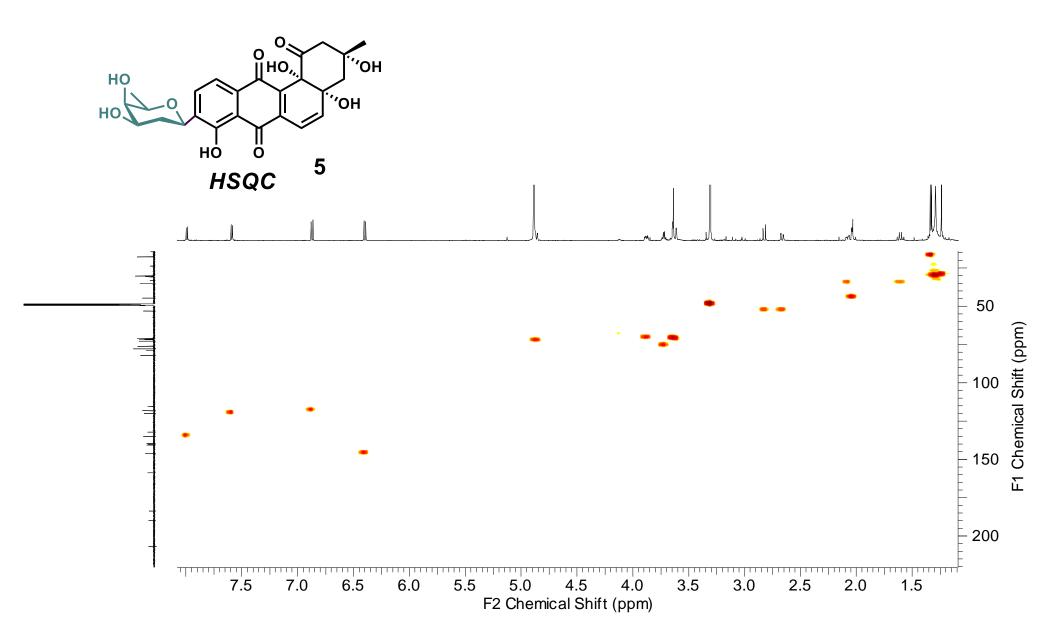


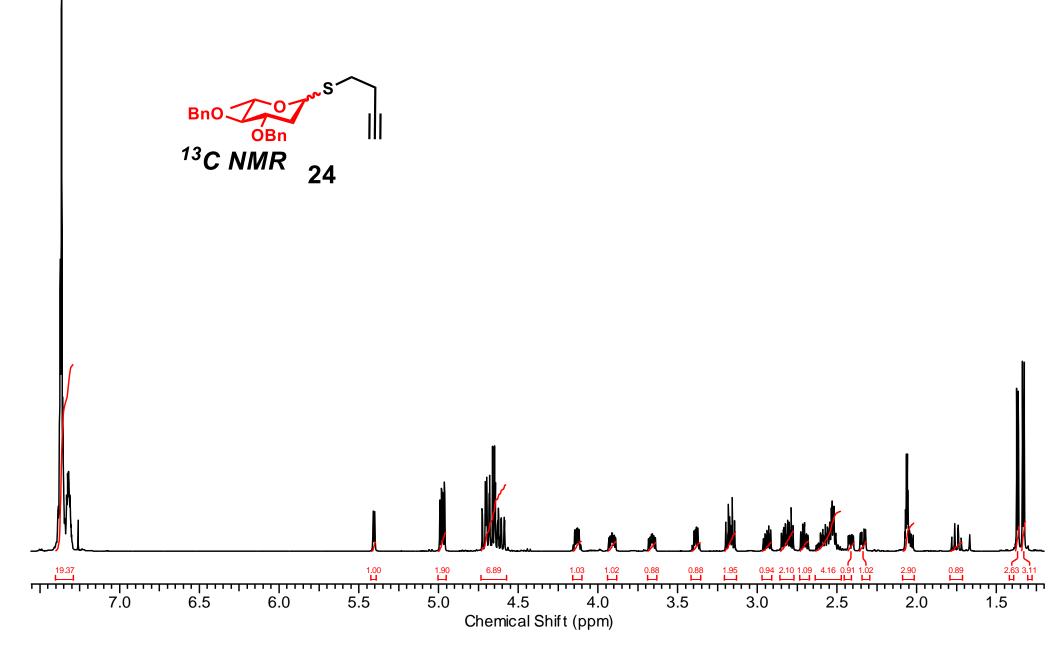


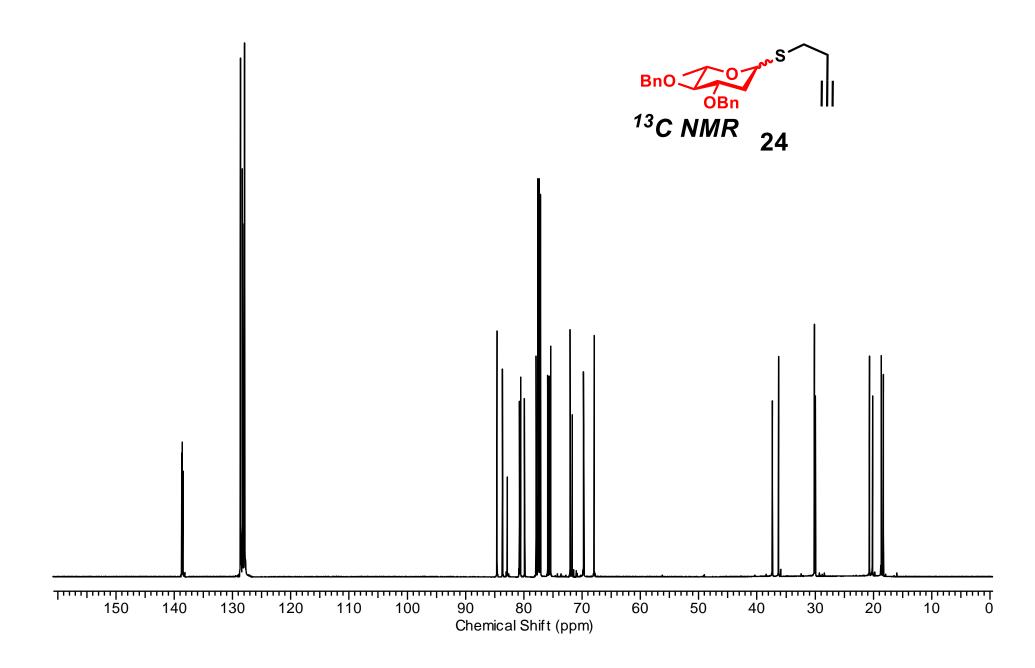


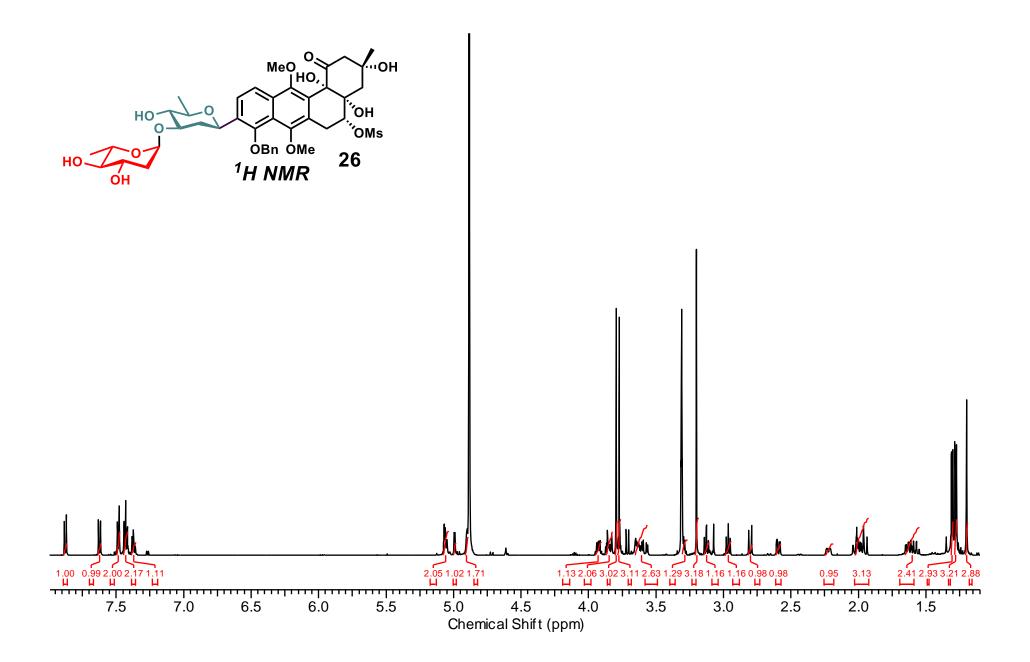


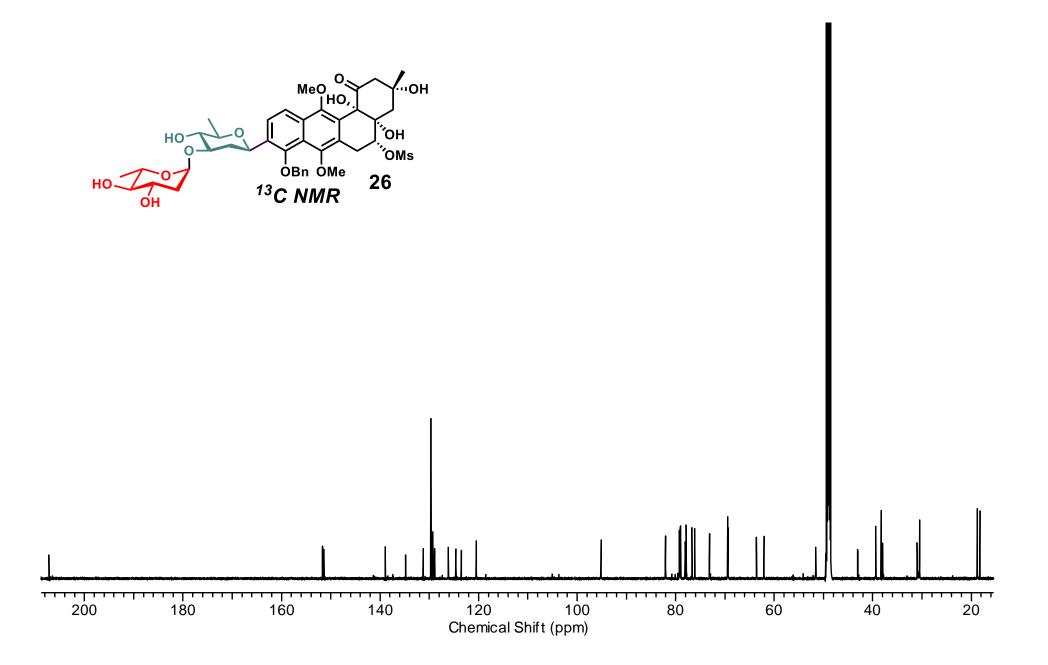


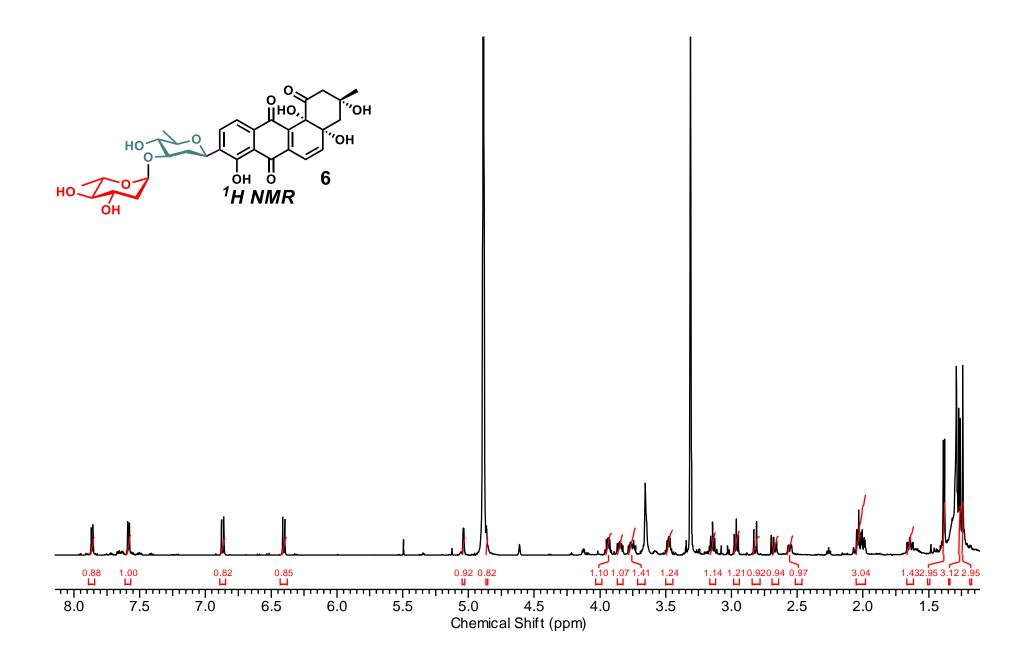


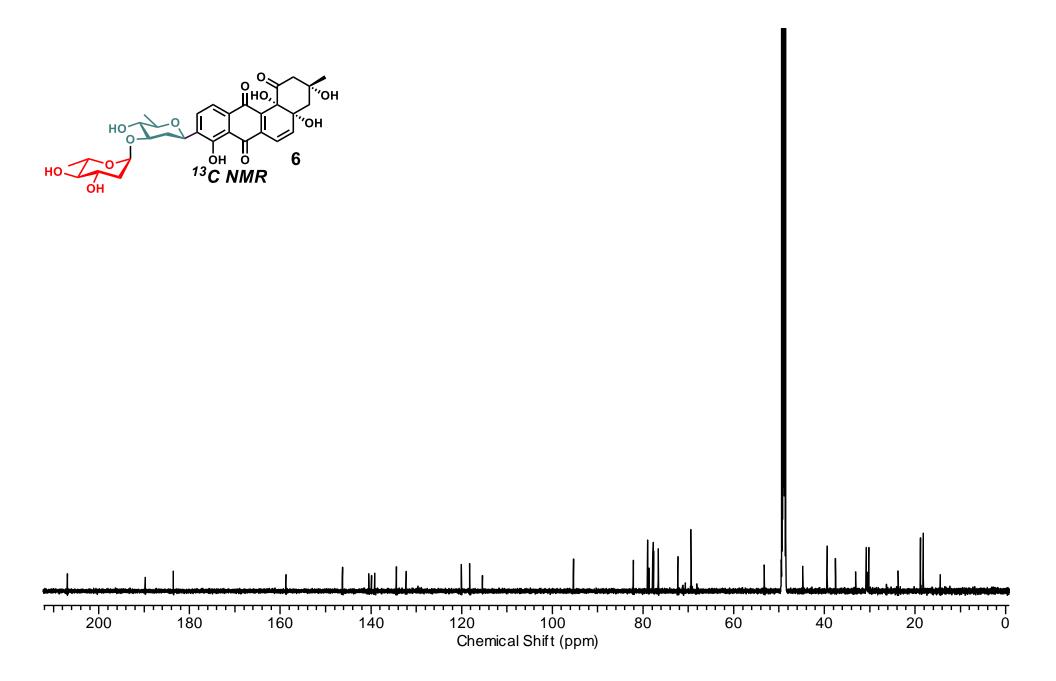


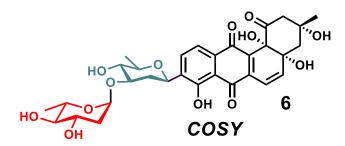


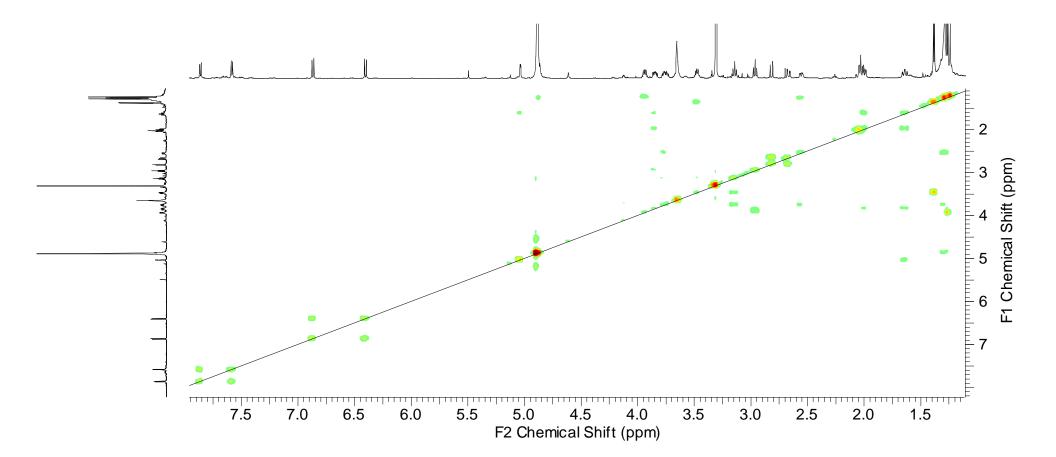


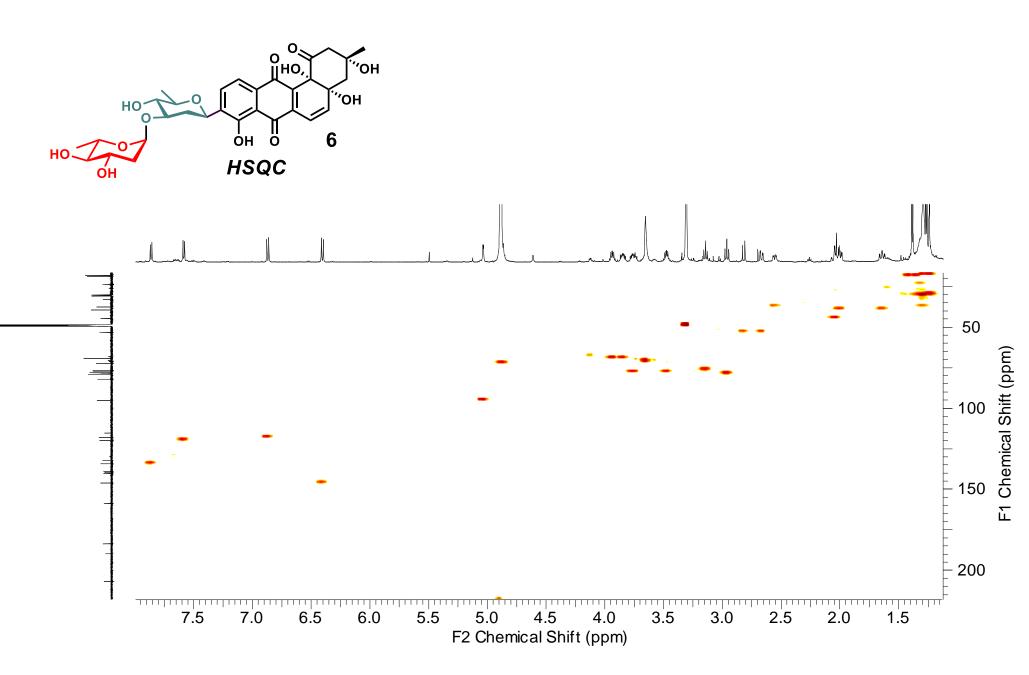


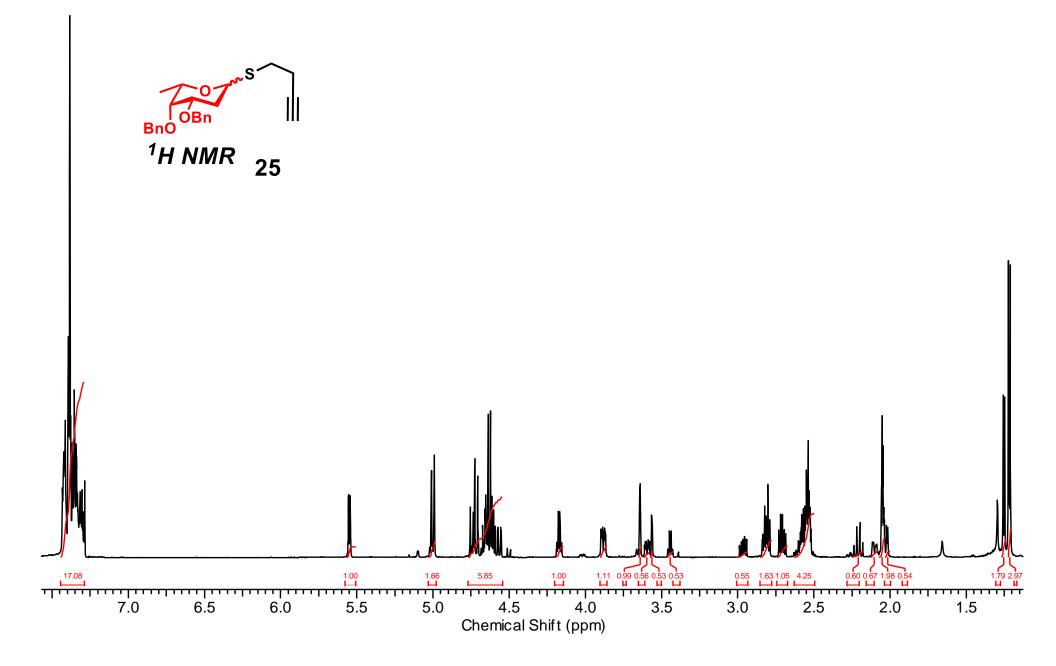


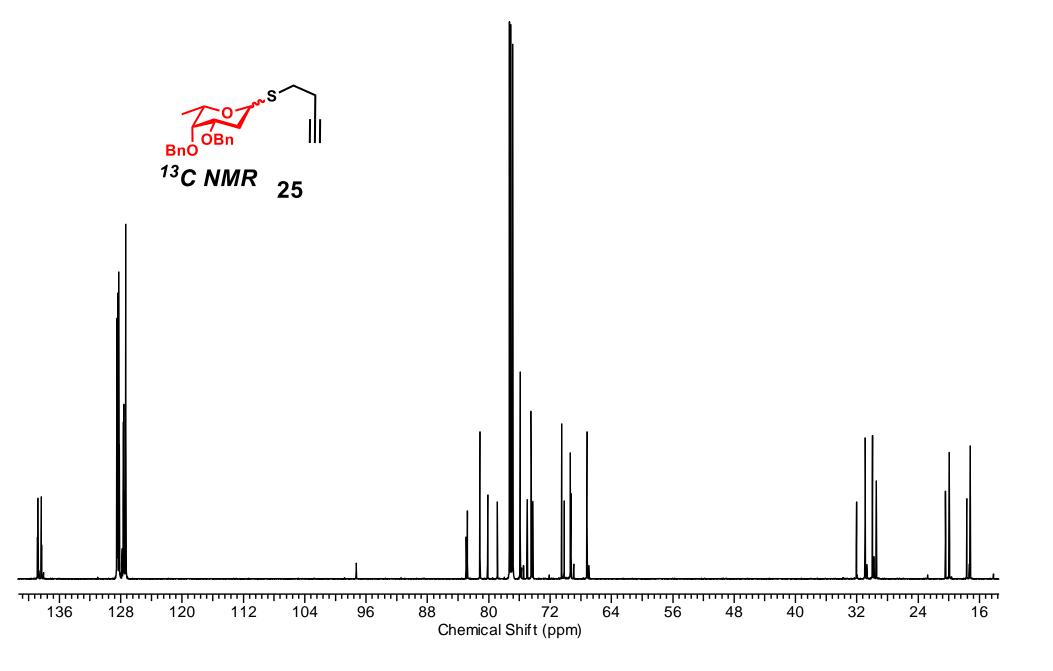


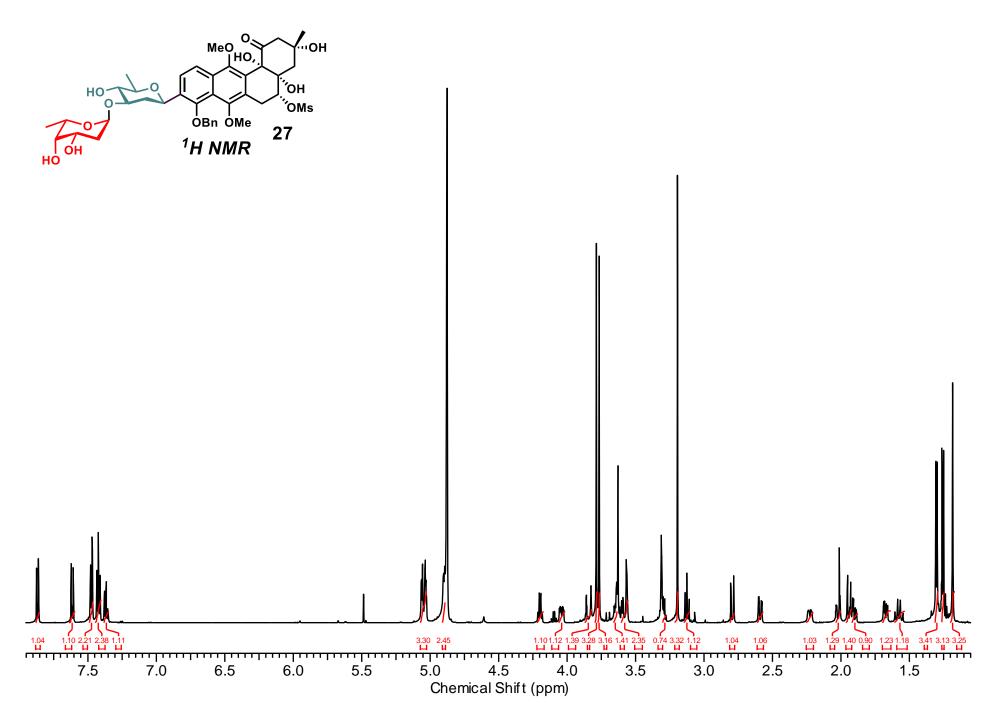


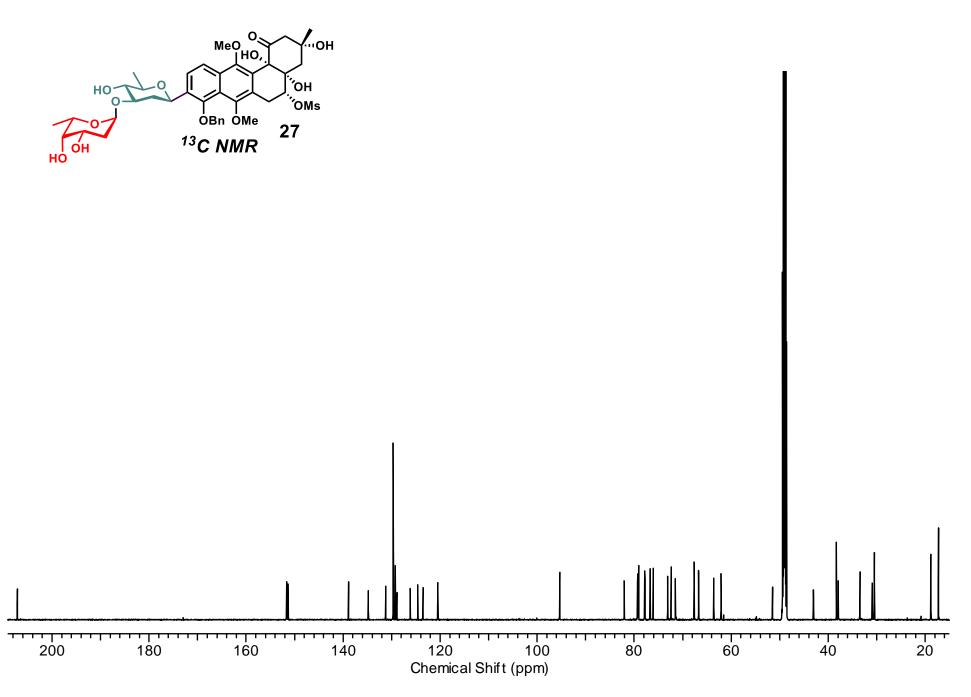


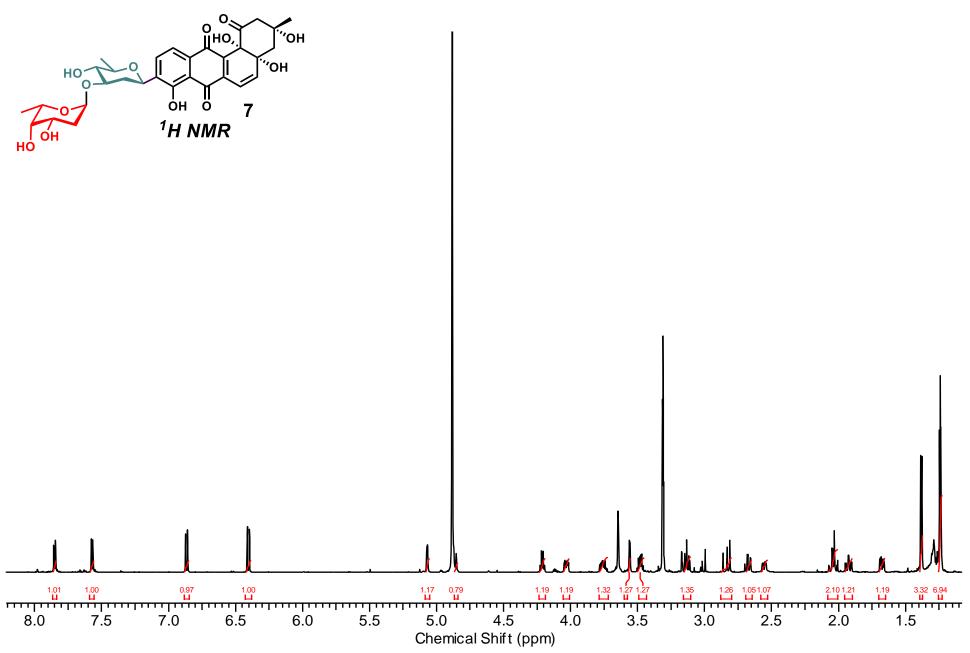


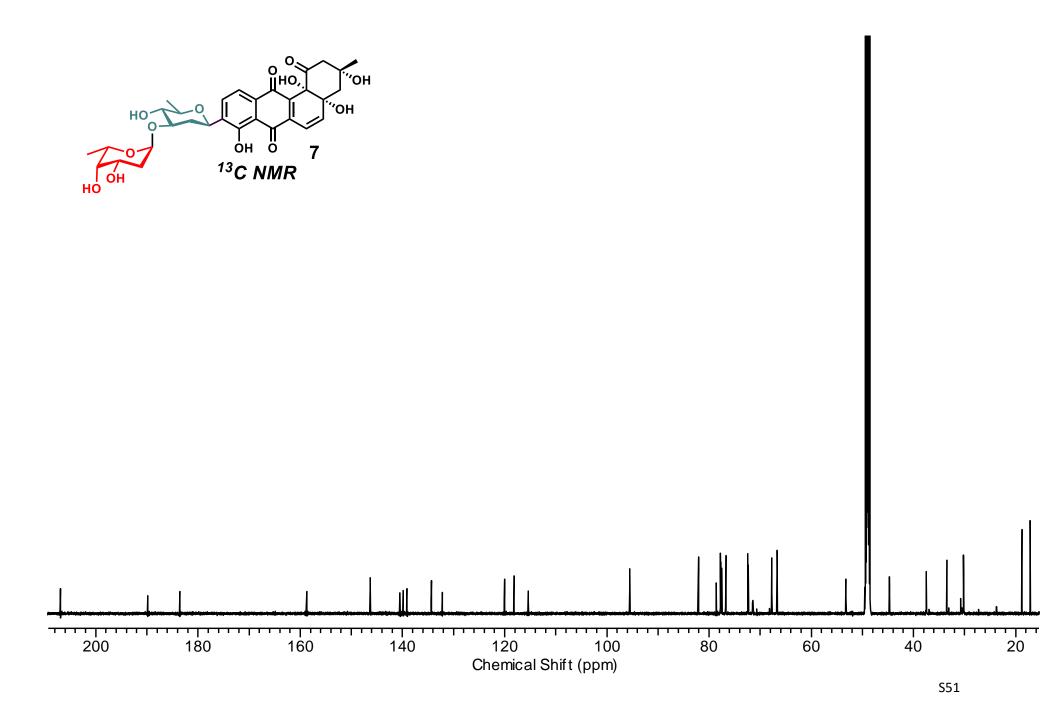


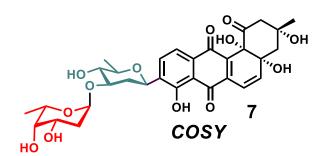


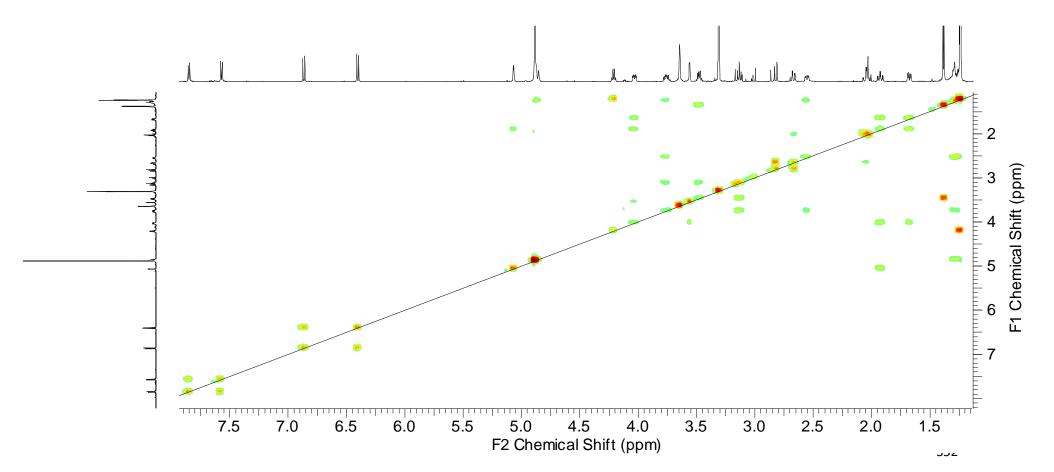




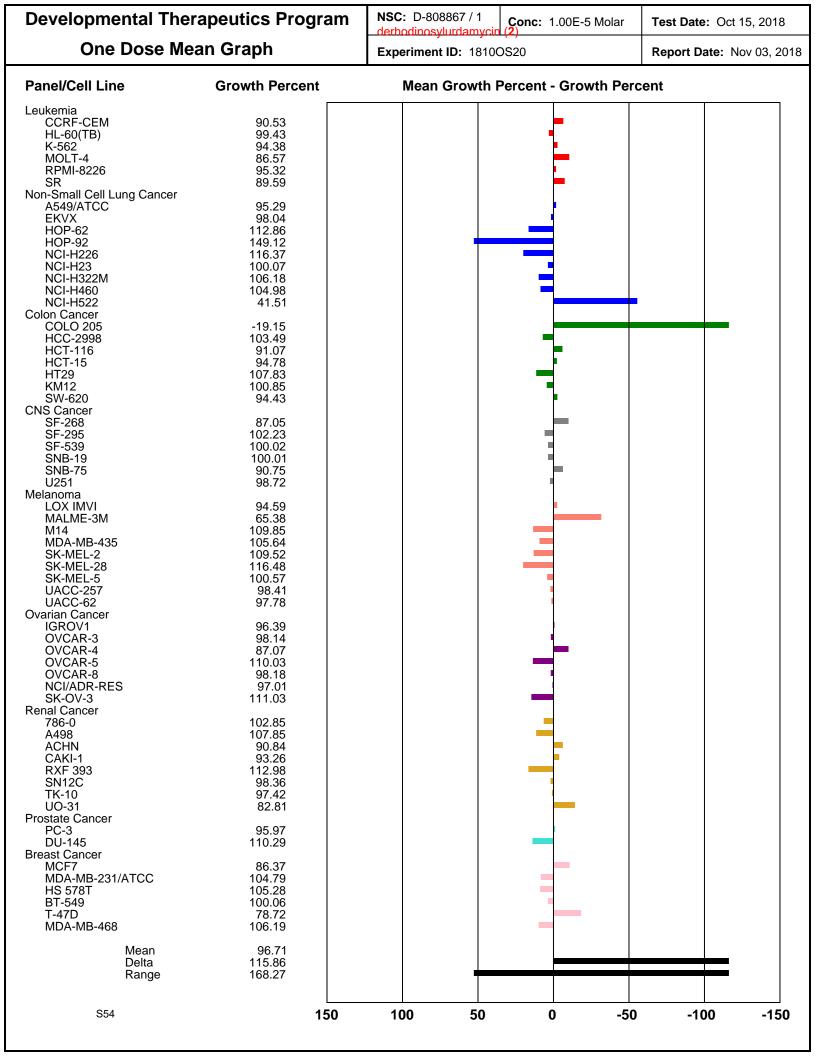


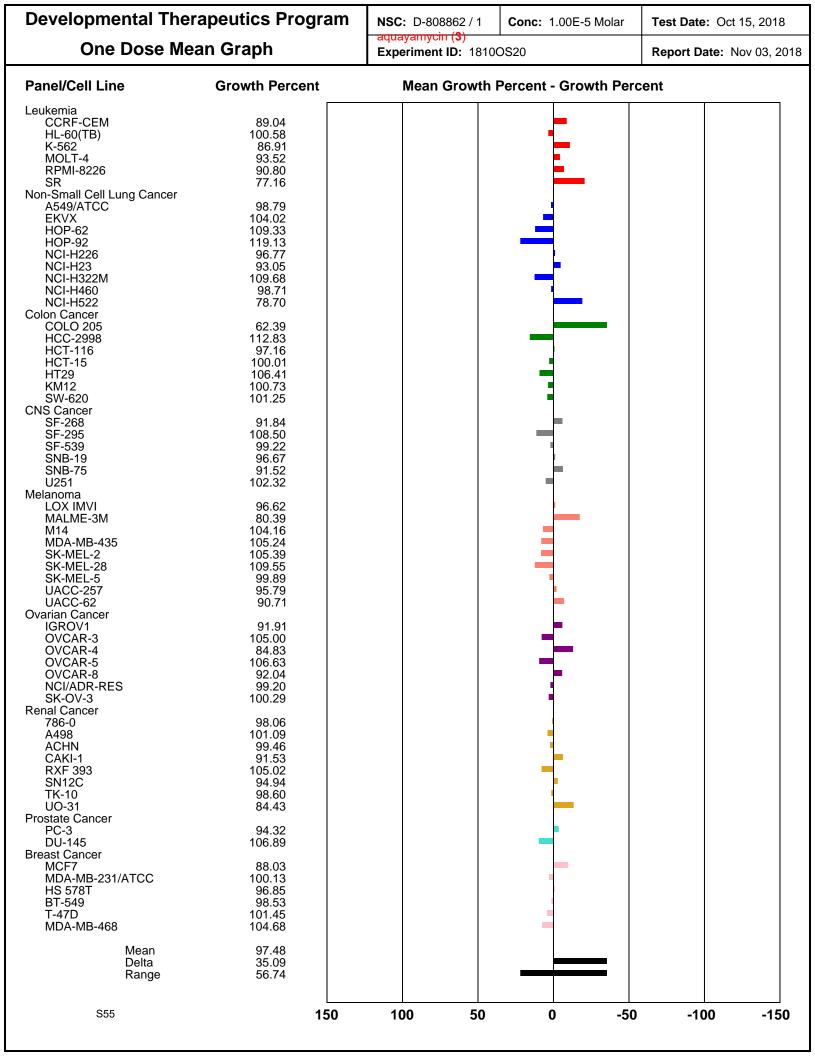


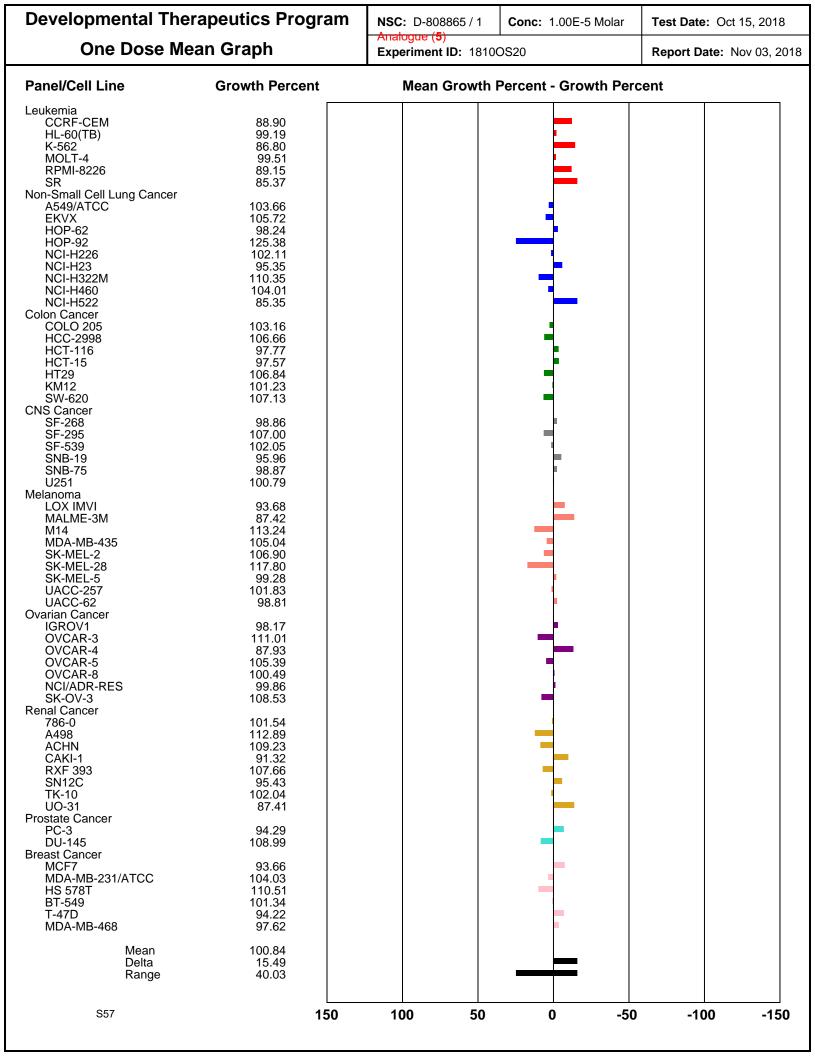


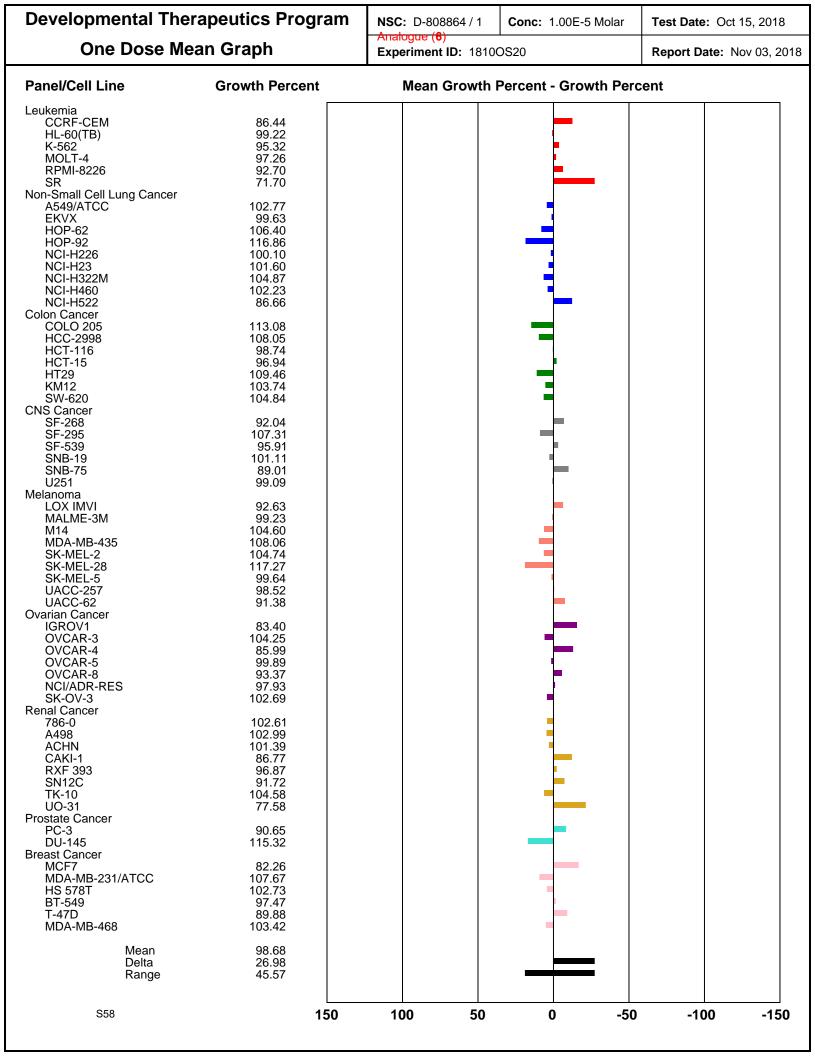


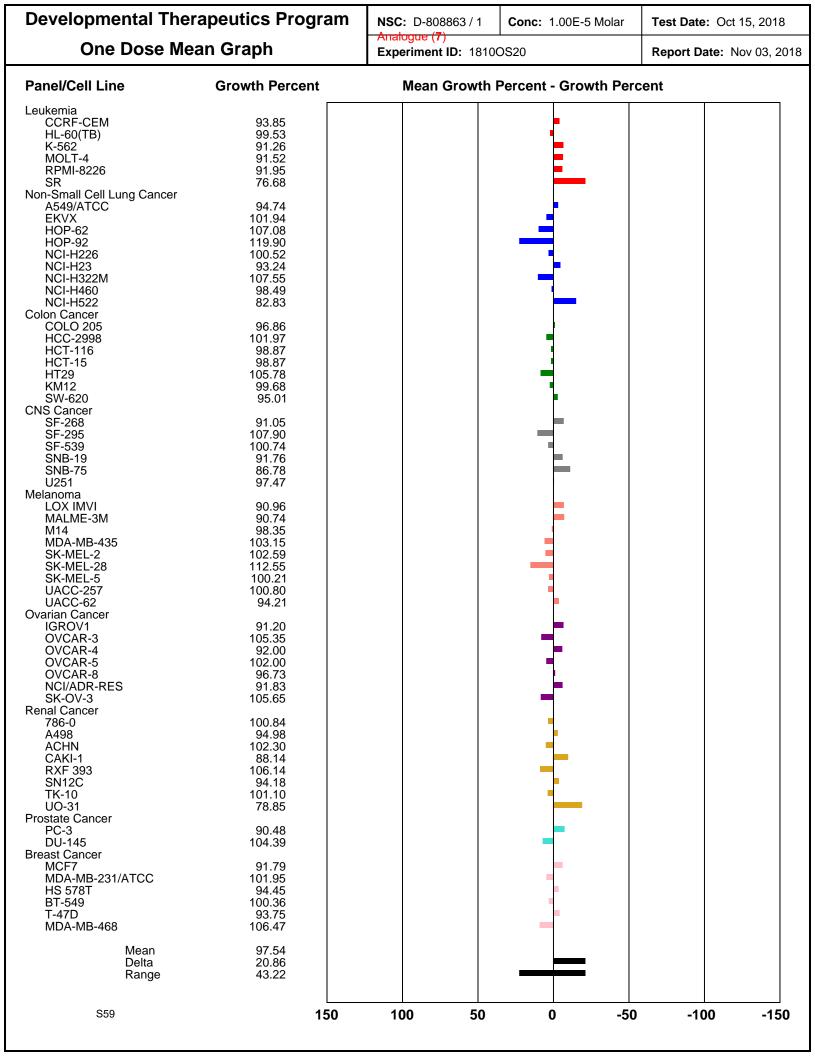


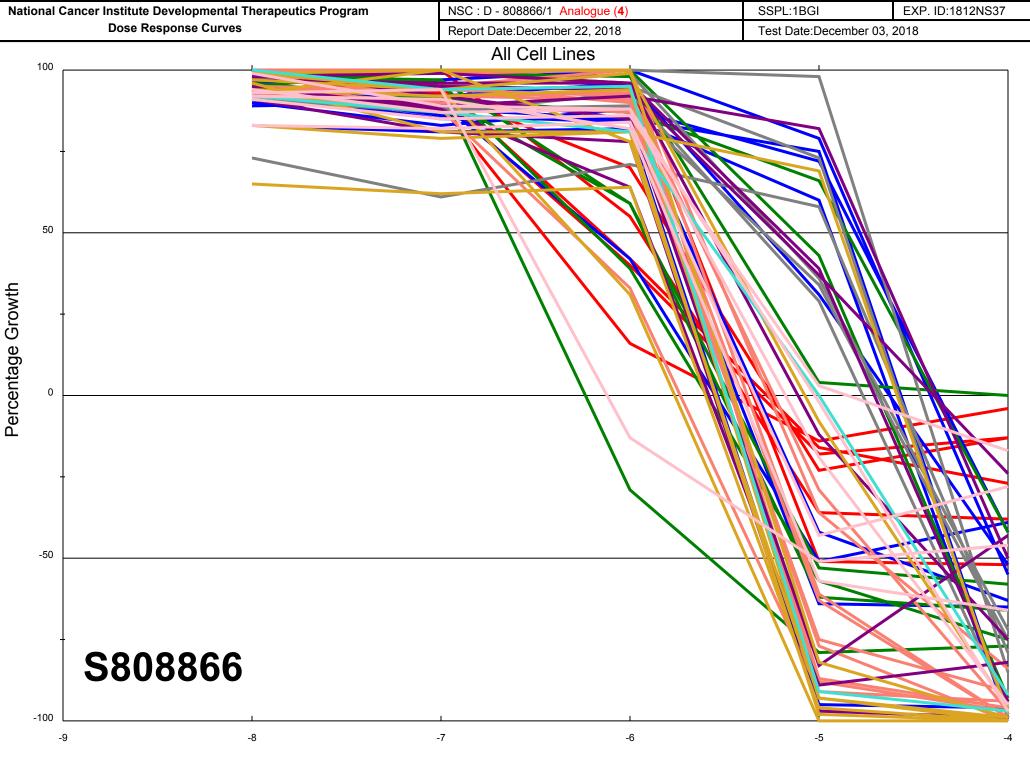




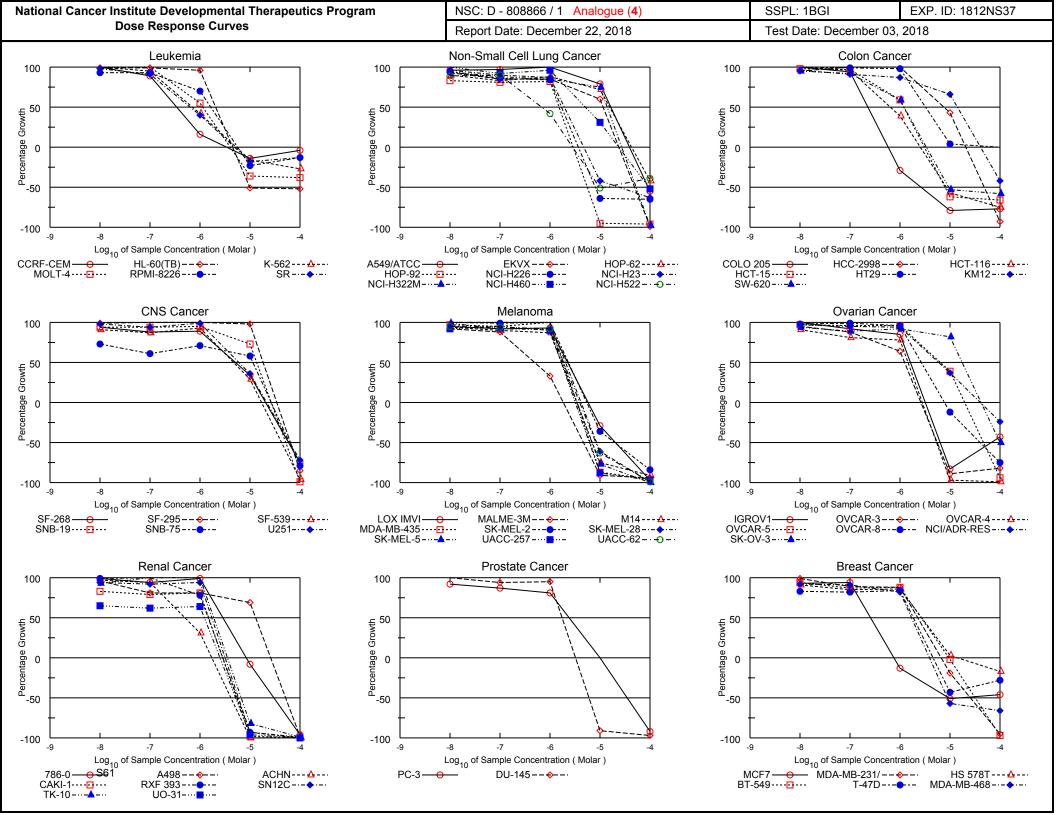








Developmental Ther	apeutics Program	NSC: D-808866 / 1	Conc: 1.00E-5 Molar	Test Date: Oct 15, 2018
One Dose Mea	an Graph	Analogue (4) Experiment ID: 1810	OS20	Report Date: Nov 03, 2018
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
Leukemia CCRF-CEM	0.45			
HL-60(TB)	-43.82			
K-562 MOLT-4	5.36 -12.80			
RPMI-8226 SR	-0.20 10.51			
Non-Small Cell Lung Cancer				
A549/ATCC EKVX	102.91 73.84			
HOP-62	49.04			
HOP-92 NCI-H226	-12.23 89.29			
NCI-H23	-6.78			
NCI-H322M NCI-H460	86.05 74.92			
NCI-H522	-59.49			-
Colon Cancer COLO 205	-81.29			
HCC-2998	94.70			
HCT-116 HCT-15	-32.13 -45.48			
HT29	3.93		•	
KM12 SW-620	77.79 -55.49			_
CNS Cancer				-
SF-268 SF-295	85.35 89.78			
SF-539	82.41			
SNB-19 SNB-75	100.64 20.03			
U251	72.39			
Melanoma LOX IMVI	-51.46			
MALME-3M	-96.67			
M14 MDA-MB-435	-24.78 -79.84			
SK-MEL-2	89.66			
SK-MEL-28 SK-MEL-5	-37.36 -53.71			_
UACC-257	77.27			
UACC-62 Ovarian Cancer	16.51			
IGROV1	27.11			
OVCAR-3 OVCAR-4	-32.79 -97.85			
OVCAR-5	38.77			
OVCAR-8 NCI/ADR-RES	-12.64 47.19			
SK-OV-3	98.81			
Renal Cancer 786-0	9.83		•	
A498	116.97			
ACHN CAKI-1	-100.00 -59.84			
RXF 393	-85.33			
SN12C TK-10	3.18 -82.81			
UO-31 Prostate Cancer	-96.60			
PC-3	72.80			
DU-145 Breast Cancer	-82.33			
MCF7	-60.21			-
MDA-MB-231/ATCC HS 578T	30.21 71.76			
BT-549	45.19			
T-47D MDA-MB-468	-45.46 -57.48			-
Mean Delta	5.96 105.96			
Range	216.97			
S56	150	100 50	0 -50	-100 -150



Log₁₀ of Sample Concentration (Molar)

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : D - 808866 / 1 Analogue (4)			Exp	Experiment ID : 1812NS37						Test Type : 08		Units : N	Units : Molar		
Report Date : December 22, 2018			Tes	Test Date : December 03, 2018						QNS	QNS :		MC :		
COMI : PA-04-28			Sta	Stain Reagent : SRB Dual-Pass Related						SSPL	SSPL : 1BGI				
Time Mean				Ontica	Log10 Concentration Optical Densities Percent Growth										
Panel/Cell Line Leukemia	Zero	Ctrl	-8.0	-7.0	-6.0	-5.0	-4.0	-8.0	-7.0	-6.0	-5.0	-4.0	GI50	TGI	LC50
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.287 1.090 0.270 0.661 0.601 0.310	1.613 3.455 2.783 2.563 2.020 1.331	1.916	1.473 3.431 2.658 2.633 1.916 1.235	1.595	0.246 0.535 0.227 0.420 0.462 0.256	0.277 0.526 0.197 0.411 0.526 0.271	101 99 100 109 93 98	89 99 95 104 93 91	16 96 42 55 70 40	-14 -51 -16 -36 -23 -18	-4 -52 -27 -38 -13 -13	3.42E-7 2.05E-6 7.06E-7 1.12E-6 1.64E-6 6.35E-7	3.33E-6 4.50E-6 5.28E-6 3.98E-6 5.65E-6 4.95E-6	 > 1.00E-4 9.85E-6 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lui A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H322M NCI-H460 NCI-H522	ng Cancer 0.404 0.838 0.733 1.119 0.827 0.794 0.842 0.179 0.589	2.076 2.330 1.798 1.794 2.235 2.593 2.176 1.609 2.071	2.015 2.229 1.693 1.676 2.148 2.519 2.094 1.625 1.914	1.662 2.032 2.419 2.017 1.495	2.077 2.112 1.666 1.669 2.008 2.367 1.970 1.555 1.219	1.718 1.733 1.501 0.060 0.299 0.457 1.845 0.626 0.291	0.180 0.009 0.422 0.048 0.291 0.297 0.016 0.087 0.357	96 93 90 83 94 96 94 101 89	97 85 83 81 86 90 88 92 90	100 85 88 82 84 87 85 96 42	79 60 72 -95 -64 -42 75 31 -51	-55 -99 -42 -96 -65 -63 -98 -52 -39	1.63E-5 1.16E-5 1.51E-6 1.51E-6 1.69E-6 1.94E-6 1.40E-5 5.15E-6 6.97E-7	3.86E-5 2.38E-5 4.26E-5 2.90E-6 3.69E-6 4.71E-6 2.71E-5 2.38E-5 2.86E-6	9.11E-5 4.92E-5 > 1.00E-4 5.58E-6 8.05E-6 2.37E-5 5.28E-5 9.55E-5
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.347 0.644 0.206 0.378 0.242 0.542 0.229	1.174 2.203 2.131 2.664 2.214 2.555 1.685	1.172 2.128 2.176 2.620 2.271 2.484 1.605	2.379	0.248 2.238 0.965 1.736 2.184 2.303 1.085	0.073 1.313 0.089 0.143 0.324 1.864 0.107	0.079 0.046 0.053 0.130 0.247 0.315 0.097	100 95 102 98 103 96 95	94 100 96 97 99 91 92	-29 102 39 59 98 87 59	-79 43 -57 -62 4 66 -53	-77 -93 -75 -66 -42 -58	2.29E-7 7.59E-6 6.49E-7 1.19E-6 3.26E-6 1.40E-5 1.20E-6	5.84E-7 2.07E-5 2.56E-6 3.08E-6 > 1.00E-4 4.08E-5 3.35E-6	2.65E-6 4.83E-5 8.45E-6 7.92E-6 > 1.00E-4 9.35E-6
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.812 1.053 0.852 0.610 1.105 0.375	2.432 3.147 2.709 2.071 1.897 1.705	2.330 3.117 2.536 1.981 1.684 1.680	2.245 3.142 2.471 1.986 1.586 1.626	2.262 3.149 2.582 2.003 1.665 1.697	1.365 3.107 1.384 1.673 1.562 0.855	0.201 0.161 0.031 0.006 0.231 0.104	94 99 91 94 73 98	88 100 87 94 61 94	89 100 93 95 71 99	34 98 29 73 58 36	-75 -85 -96 -99 -79 -79	5.16E-6 1.83E-5 4.67E-6 1.36E-5 1.14E-5 6.02E-6	2.05E-5 3.44E-5 1.70E-5 2.65E-5 2.64E-5 2.15E-5	5.87E-5 6.46E-5 4.26E-5 5.18E-5 6.12E-5 6.23E-5
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.634 0.713 0.470 0.535 0.788 0.825 0.958 0.886 1.044	3.243 1.659 2.100 2.420 2.257 2.246 3.125 2.133 2.909	1.997 2.365 2.266 2.271 3.108 2.034	1.547 1.933 2.323 2.237	2.421 2.339 2.295 2.923 2.013	0.218 0.106	0.041 0.024 0.130 0.011 0.003 0.027	95 92 94 97 101 102 99 92 95	92 88 90 95 99 100 92 95 94	93 33 87 100 106 103 91 90 92	-29 -91 -75 -87 -36 -61 -77 -88 -63	-97 -94 -91 -96 -84 -99 -100 -97 -99	2.25E-6 4.92E-7 1.70E-6 1.85E-6 2.47E-6 2.11E-6 1.75E-6 1.68E-6 1.86E-6	5.77E-6 1.84E-6 3.45E-6 5.566E-6 4.25E-6 3.47E-6 3.21E-6 3.91E-6	2.01E-5 4.65E-6 7.01E-6 6.37E-6 1.96E-5 8.54E-6 6.88E-6 6.12E-6 8.20E-6
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.458 0.437 0.716 0.619 0.451 0.690 0.882	1.904 1.485 1.445 1.321 2.130 2.261 1.634	1.428 1.381 1.300 2.091 2.221		1.105 1.284 1.295 2.065 2.161	0.050 0.022 0.896 0.397 1.267	0.079 0.006 0.040 0.111 0.525	100 95 91 97 98 97 94	92 88 81 96 99 95 89	85 64 78 96 96 94 92	-83 -89 -97 39 -12 37 82	-43 -82 -99 -94 -75 -24 -50	1.62E-6 1.23E-6 1.44E-6 6.51E-6 2.67E-6 5.84E-6 1.75E-5	3.21E-6 2.62E-6 2.79E-6 1.98E-5 7.75E-6 4.03E-5 4.20E-5	5.58E-6 5.38E-6 4.70E-5 3.97E-5 > 1.00E-4 > 1.00E-4
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.597 1.406 0.342 0.503 0.841 0.671 0.647 0.730	2.682 2.125 1.300 1.642 1.657 2.480 1.741 1.839	2.095 1.273 1.446 1.650 2.375 1.662	1.986 1.239	1.985 0.641 1.429 1.478 2.369 1.995	0.047 0.114	0.030 -0.003 -0.003 -0.004 0.004 0.005	99 96 97 83 99 94 93 65	94 81 94 79 100 92 106 62	99 81 31 81 78 94 123 64	-8 69 -100 -98 -93 -93 -82 -96	-96 -98 -100 -100 -100 -99 -99 -100	2.88E-6 1.30E-5 5.00E-7 1.50E-6 1.46E-6 1.72E-6 2.27E-6 1.23E-6	8.50E-6 2.59E-5 1.73E-6 2.85E-6 2.85E-6 3.18E-6 3.97E-6 2.52E-6	3.03E-5 5.16E-5 4.16E-6 5.42E-6 5.59E-6 5.88E-6 6.95E-6 5.19E-6
Prostate Cancer PC-3 DU-145	0.434 0.418	1.590 1.681	1.496 1.691			0.437 0.037		92 101	87 94	81 95	-91	-92 -97	2.42E-6 1.75E-6	1.01E-5 3.24E-6	3.50E-5 6.01E-6
Breast Cancer MCF7 MDA-MB-231/AT0 HS 578T BT-549 T-47D MDA-MB-468	0.406 CC 0.680 1.143 0.759 0.975 1.050	2.124 1.501 2.326 1.971 1.876 2.390	1.495 2.219 1.897 1.726	2.146 1.809	1.401 2.163 1.822 1.731	0.549 1.183 0.742 0.553	0.036 0.952 0.020	93 99 91 94 83 92	94 89 85 87 82 91	-13 88 86 88 84 82	-51 -19 3 -2 -43 -57	-46 -95 -17 -97 -28 -66	2.57E-7 2.25E-6 2.74E-6 2.62E-6 1.85E-6 1.70E-6	7.58E-7 6.60E-6 1.47E-5 9.44E-6 4.57E-6 3.87E-6	2.55E-5 > 1.00E-4 3.18E-5 > 1.00E-4 8.85E-6

National Cancer Institute Developmental Therapeutics Program		NSC : D - 808866/1 Analogue (4) Units :Molar	SSPL :1BGI E	EXP. ID :1812NS37			
	Mean Graphs	Report Date :December 22, 2018	Test Date :December 03, 20	Test Date :December 03, 2018			
Panel/Cell Line	Log ₁₀ GI50 GI50	Log ₁₀ TGI TGI	Log ₁₀ LC50 LC50				
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H223 NCI-H220 NCI-H222 NCI-H460 NCI-H522	-6.47 -5.69 -6.15 -5.95 -5.78 -6.20 -4.94 -4.81 -5.82 -5.77 -5.71 -4.85 -5.29 -6.16	-5.48 -5.35 -5.28 -5.40 -6.25 -5.31 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
NCI-H522 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SE-268	-6.64 -5.12 -6.19 -5.92 -5.49 -4.85 -5.92	-6.23 -4.68 -5.59 -5.51 > -4.00 -4.39 -5.48	-5.58 -4.32 -5.07 -5.10 > -4.00 -5.03	•			
SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M	-5.29 -4.74 -5.33 -4.87 -4.94 -5.22	-4.69 -4.46 -4.77 -4.58 -4.58 -4.67	-4.23 -4.19 -4.37 -4.29 -4.21 -4.21 -4.21				
MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62 Ovarian Cancer IGROV1 OVCAR-3 OVCAR-3 OVCAR-5 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	-5.65 -6.31 -5.77 -5.73 -5.61 -5.68 -5.76 -5.77 -5.73	-5.24 -5.73 -5.46 -5.46 -5.25 -5.37 -5.46 -5.49 -5.41	4.70 -5.33 -5.15 -5.20 -4.71 -5.07 -5.16 -5.21 -5.09				
IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 NCI/ADR-RES SK-OV-3 Renal Cancer 786-0 A498	-5.79 -5.91 -5.84 -5.19 -5.57 -5.23 -4.76	-5.49 -5.58 -5.55 -4.70 -5.11 -4.39 -4.38	-5.25 -5.27 -4.33 -4.40 > -4.00 > -4.00				
ACHN CAKI-1 RXF 393 SN12C TK-10 LIQ.31	-5.54 -4.89 -6.30 -5.83 -5.84 -5.77 -5.64 -5.91	-5.07 -4.59 -5.76 -5.55 -5.54 -5.50 -5.40 -5.60	-4.52 -4.29 -5.38 -5.27 -5.25 -5.23 -5.23 -5.16 -5.29				
Prostate Cancer PC-3 DU-145 Breast Cancer MCF7 MCF7	-5.62 -5.76	-5.00 -5.49	-4.46 -5.22				
MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	-6.59 -5.65 -5.56 -5.58 -5.73 -5.77	-6.12 -5.18 -4.83 -5.02 -5.34 -5.41	-4.59 > -4.00 -4.50 > -4.00 -5.05				
_MID _Delta_S63	-5.62 1.02	-5.16 1.07	-4.64 0.94				
Range	1.9	2.23	1.58	•			
L	+3 +2 +1 0 -1 -2	-3 +3 +2 +1 0 -1 -2 -3	+3 +2 +1 0	-1 -2 -3			